2021-2022學年安徽省滁州市定遠縣育才學校高一(上)期末數學試卷
發布:2024/4/20 14:35:0
一、單選題(本大題共8小題,共40分)
-
1.定義集合運算:A*B={z|z=xy,x∈A∩B,y∈A∪B}.若集合A={1,2,3},B={0,1,2},則?(A*B)A=( )
A.{0} B.{0,4} C.{0,6} D.{0,4,6} 組卷:84引用:5難度:0.8 -
2.“
”是“0<x<π6”的( )sinx<12A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件 組卷:144引用:4難度:0.7 -
3.命題“?x∈R,x2+1≥1”的否定為( )
A.?x∈R,x2+1≤1 B.?x∈R,x2+1≤1 C.?x∈R,x2+1<1 D.?x∈R,x2+1<1 組卷:70引用:4難度:0.8 -
4.若x≥1,則
的最小值為( )x+54xA. 5B. 25C. 94D.5 組卷:251引用:2難度:0.8 -
5.已知函數f(x)是定義在R上的奇函數,且滿足f(x+2)=-f(x),則f(2022)=( )
A.-2022 B.0 C.1 D.2022 組卷:428引用:6難度:0.8 -
6.函數f(x)=
的圖象大致為( )2|x|x2+1A. B. C. D. 組卷:198引用:11難度:0.9 -
7.給出冪函數①f(x)=x;②f(x)=x2;③f(x)=x3;④f(x)=
;⑤f(x)=x.其中滿足條件f1x>(x1+x22)(x1>x2>0)的函數的個數是( )f(x1)+f(x2)2A.1個 B.2個 C.3個 D.4個 組卷:236引用:19難度:0.9
四、解答題(本大題共6小題,共70分)
-
21.已知f(x)=Asin(ωx+φ)[A,ω>0,φ∈(-
,π2)],其圖像相鄰兩條對稱軸的距離為π2,且f(0)=1,f(π2)=A.π6
(Ⅰ)求f(x);
(Ⅱ)求函數f(x)在區間(,π4)上的單調遞增區間.13π12組卷:166引用:4難度:0.6 -
22.若函數f(x)=cos(ωx+φ)(ω>0,|φ|<
)的一個零點和與之相鄰的對稱軸之間的距離為π2,且當x=π4時,f(x)取得最小值.2π3
(1)求f(x)的解析式及其單調遞減區間;
(2)若x∈[,π4],求f(x)的值域.5π6組卷:505引用:2難度:0.6