2022-2023學年天津?qū)嶒炛袑W高三(上)質(zhì)檢數(shù)學試卷(一)
發(fā)布:2024/4/20 14:35:0
一、單選題(本大題共9小題,共45分)
-
1.設(shè)全集U=R,集合A={x|2x>1},B={x|-1≤x≤5},則(?UA)∩B等于( )
A.[-1,0) B.(0,5] C.[-1,0] D.[0,5] 組卷:105引用:15難度:0.9 -
2.設(shè)x∈R,則“|x-2|<1”是“x2+x-2>0”的( )
A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件 組卷:100引用:6難度:0.9 -
3.函數(shù)
的圖象大致是( )f(x)=ex1-x2A. B. C. D. 組卷:277引用:9難度:0.8 -
4.設(shè)a=log37,b=21.1,c=0.83.1,則( )
A.b<a<c B.c<b<a C.c<a<b D.a(chǎn)<c<b 組卷:391引用:83難度:0.7 -
5.已知函數(shù)f(x)的定義域為R,當x<0時,f(x)=x3-1;當-1≤x≤1時,f(-x)=-f(x);當x>
時,12,則f(6)=( )f(x+12)=f(x-12)A.-6 B.-1 C.0 D.2 組卷:214引用:2難度:0.7 -
6.已知等差數(shù)列{an}的前n項和為Sn,S4=22,Sn=330,Sn-4=176,則n=( )
A.14 B.15 C.16 D.17 組卷:583引用:4難度:0.5
三、解答題:
-
19.已知等比數(shù)列{an}的前n項和為Sn,公比q>0,S2=2a2-2,S3=a4-2,數(shù)列{bn}滿足a2=4b1,nbn+1-(n+1)bn=n2+n(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明數(shù)列為等差數(shù)列;{bnn}
(3)設(shè)數(shù)列{cn}的通項公式為cn=,其前n項和為Tn,求T2n.-anbn2,n為奇數(shù)anbn4,n為偶數(shù)組卷:279引用:1難度:0.5 -
20.設(shè)函數(shù)f(x)=lnx+
,m∈R.mx
(Ⅰ)當m=e時,求函數(shù)f(x)的極小值;
(Ⅱ)討論函數(shù)g(x)=f'(x)-零點的個數(shù);x3
(Ⅲ)若對任意的b>a>0,<1恒成立,求m的取值范圍.f(b)-f(a)b-a組卷:266引用:7難度:0.1