2023-2024學年江蘇省蘇州市高新實驗中學九年級(上)期中數學試卷
發布:2024/10/14 5:0:2
一.仔細選一選(本題有10個小題,每小題3分,共30分)
-
1.下列事件中,屬于必然事件的是( ?。?/h2>
A.射擊運動員射擊一次,命中10環 B.在一個只裝有白球的袋中摸出紅球 C.a是實數,|a|≥0 D.一個三角形的三個內角的和大于180° 組卷:102引用:3難度:0.6 -
2.已知點P到圓心O的距離為5,若點P在圓內,則⊙O的半徑可能為( ?。?/h2>
A.3 B.4 C.5 D.6 組卷:1484引用:26難度:0.5 -
3.已知2a=3b,則下列比例式錯誤的是( )
A. =3a2bB. =a3b2C. =ba23D. =2a3b組卷:156引用:5難度:0.7 -
4.把二次函數y=-x2的圖象向左平移1個單位,然后向上平移3個單位,則平移后的圖象對應的二次函數的關系式為( )
A.y=-(x+1)2+3 B.y=-(x+1)2-3 C.y=-(x-1)2-3 D.y=-(x-1)2+3 組卷:470引用:9難度:0.7 -
5.如圖,在四邊形ABCD中,已知∠ADC=∠BAC,那么補充下列條件后不能判定△ADC和△BAC相似的是( ?。?/h2>
A.CA平分∠BCD B.∠DAC=∠ABC C.AC2=BC?CD D. ADAB=DCAC組卷:3352引用:34難度:0.6 -
6.如圖,DE∥BC,BD:CE=4:3,AD=12,則AE的長為( ?。?br />?
A.3 B.4 C.6 D.9 組卷:274引用:5難度:0.7 -
7.如圖,OA是⊙O的半徑,以OA為直徑的⊙C與⊙O的弦AB相交于點D,則AD與BD的大小關系( ?。?/h2>
A.AD>BD B.AD=BD C.AD<BD D.無法判斷 組卷:274引用:6難度:0.7 -
8.小凱在畫一個開口向下的二次函數圖象時,列出如下表格:
x … -1 0 1 2 … y … 3 2 3 3 … A.(-1,3) B.(0,2) C.(1,3) D.(2,3) 組卷:467難度:0.5
三.全面答一答(本題有8個小題,共66分)
-
23.根據以下素材,探索完成任務.
如何設計警戒線之間的寬度? 素材1
圖1為某公園的拋物線型拱橋,圖2是其橫截面示意圖,測得水面寬度AB=24米,拱頂離水面的距離為CD=4米.素材2 擬在公園里投放游船供游客乘坐,載重最少時,游船的橫截面如圖3所示,漏出水面的船身為矩形,船頂為等腰三角形.如圖3,測得相關數據如下:EF=EK=1.7米,FK=3米,GH=IJ=1.26米,FG=JK=0.4米. 素材3 為確保安全,擬在石拱橋下面的P,Q兩處設置航行警戒線,要求如下:
①游船底部HI在P,Q之間通行;
②當載重最少通過時,游船頂部E與拱橋的豎直距離至少為0.5米.問題解決 任務1 確定拱橋形狀 在圖2中建立合適的直角坐標系,并求這條拋物線的函數表達式. 任務2 設計警戒線之間的寬度 求PQ的最大值. 組卷:848引用:9難度:0.5 -
24.如圖,點P是等邊三角形ABC中AC邊上的動點(0°<∠ABP<30°),作△BCP的外接圓交AB于點D.點E是圓上一點,且
,連接DE交BP于點F.?PD=?PE
(1)求證:BE=BC;
(2)當點P運動變化時,∠BFD的度數是否發生變化?若變化,請說明理由;若不變,求∠BFD的度數.
(3)探究線段BF、CE、EF之間的數量關系,并證明.組卷:415引用:5難度:0.3