2022-2023學年黑龍江省七臺河市勃利高級中學高二(上)期末數學試卷
發布:2024/4/20 14:35:0
一、單項選擇題:本題共8小題,每小題5分,共40分.
-
1.已知等差數列{an}中,a2+a8=8,則該數列前9項和S9等于( )
A.18 B.27 C.36 D.45 組卷:393引用:18難度:0.9 -
2.已知e為自然對數的底數,曲線y=aex+x在點(1,ae+1)處的切線與直線2ex-y-1=0平行,則實數a=( )
A. e-1eB. 2e-1eC. e-12eD. 2e-12e組卷:108引用:4難度:0.9 -
3.已知雙曲線C:
-x2a2=1(a>0,b>0)的離心率為y2b2,則點(4,0)到C的漸近線的距離為( )2A. 2B.2 C. 322D.2 2組卷:6887引用:19難度:0.9 -
4.在數列{an}中,a1=2,an+1=an+ln(1+
),則an=( )1nA.2+lnn B.2+(n-1)lnn C.2+nlnn D.1+n+lnn 組卷:1467引用:121難度:0.7 -
5.已知點A(2,2),B(-1,3),若直線kx-y-1=0與線段AB有交點,則實數k的取值范圍是( )
A.(-∞,-4)∪( ,+∞)32B.(-4, )32C.(-∞,-4]∪[ ,+∞)32D.[-4, ]32組卷:1242引用:12難度:0.7 -
6.在三棱錐O-ABC中,M是OA的中點,P是△ABC的重心,設
,則a=OA,b=OB,c=OC=( )MPA. 12a-16b+13cB. 13a-12b+cC. -16a+13b+13cD. -a+13b-12c組卷:414引用:11難度:0.8 -
7.設F1,F2是雙曲線C:x2-
=1的兩個焦點,O為坐標原點,點P在C上且|OP|=2,則△PF1F2的面積為( )y23A. 72B.3 C. 52D.2 組卷:7811引用:33難度:0.6
三、計算題:本題共6小題,17題10分,18-22題每小題10分,共70分.
-
21.已知橢圓
的離心率C:x2a2+y2b2=1(a>b>0),原點到過點A(a,0),B(0,-b)的直線的距離是e=32.455
(1)求橢圓C的方程;
(2)如果直線y=kx+1(k≠0)交橢圓C于不同的兩點E,F,且E,F都在以B為圓心的圓上,求k的值.組卷:171引用:19難度:0.3 -
22.已知橢圓C:
+x2a2=1(a>b>0)的離心率為y2b2,且過點A(2,1).22
(1)求C的方程;
(2)點M,N在C上,且AM⊥AN,AD⊥MN,D為垂足.證明:存在定點Q,使得|DQ|為定值.組卷:8631引用:28難度:0.2