2022-2023學年重慶市烏江新高考協作體高一(下)期末數學試卷
發布:2024/5/29 8:0:9
一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項是符合題目要求的。
-
1.已知i為虛數單位,復數z滿足(1+2i)z=3-i,則復數z在復平面所對應的點在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限 組卷:81引用:4難度:0.7 -
2.已知a,b∈R,i是虛數單位,若a+2i與1+bi互為共軛復數,則b=( )
A.1 B.-1 C.2 D.-2 組卷:119引用:6難度:0.8 -
3.已知三個不同的平面α,β,γ和直線m,n,若α∩γ=m,β∩γ=n,則“α∥β”是“m∥n”的( )
A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 組卷:89引用:6難度:0.7 -
4.某學校對班級管理實行量化打分,每周一總結,若一個班連續5周的量化打分不低于80分,則為優秀班級.下列能斷定該班為優秀班級的是( )
A.某班連續5周量化打分的平均數為83,中位數為81 B.某班連續5周量化打分的平均數為83,方差大于0 C.某班連續5周量化打分的中位數為81,眾數為83 D.某班連續5周量化打分的平均數為83,方差為1 組卷:53引用:2難度:0.8 -
5.已知正方體ABCD-A1B1C1D1的棱長為1,E,F分別是棱A1D1和棱C1D1的中點,G為棱BC上的動點(不含端點).
①三棱錐D1-EFG的體積為定值;
②當G為棱BC的中點時,△EFG是銳角三角形;
③△EFG面積的取值范圍是;(38,178)
④若異面直線AB與EG所成的角為α,則.sinα∈[22,53)
以上四個命題中正確命題的個數為( )A.1 B.2 C.3 D.4 組卷:129引用:3難度:0.6 -
6.已知直線a?α,給出以下三個命題:
①若平面α∥平面β,則直線a∥平面β;
②若直線a∥平面β,則平面α∥平面β;
③若直線a不平行于平面β,則平面α不平行于平面β.
其中正確的命題是( )A.② B.③ C.①② D.①③ 組卷:1608引用:8難度:0.9 -
7.已知A,B,C,D是體積為
的球體表面上四點,若AB=4,AC=2,2053π,且三棱錐A-BCD的體積為BC=23,則線段CD長度的最大值為( )23A. 23B. 32C. 13D. 25組卷:238引用:5難度:0.5
四、解答題:本題共6小題,共70分。解答應寫出文字說明、證明過程或演算步驟。
-
21.在四棱錐P-ABCD中,底面ABCD是邊長為6的菱形,∠ABC=60°,PB=PD,PA⊥AC.
(1)證明:BD⊥平面PAC;
(2)若PA=3,M為棱PC上一點,滿足,求點A到平面MBD的距離.CM=23CP組卷:146引用:4難度:0.6 -
22.如圖,四邊形ABCD中,
,AB=3,BC=2,∠DAB=∠DCB=π2且∠ABC為銳角.S△ABC=332
(1)求DB;?
(2)求△ACD的面積.組卷:696引用:8難度:0.5