《第2章 數列》2010年單元測試卷(3)
發布:2024/4/20 14:35:0
一、選擇題(共13小題,每小題3分,滿分39分)
-
1.數列
…,的前n項和為( )412,814,1618,32116A.2n+2-2-n-1 B.2n+2-2-n-3 C.2n+2+2-n-1 D.2n+2-2-n-1-1 組卷:57引用:5難度:0.9 -
2.設Sn為等差數列{an}的前n項和,且a3+a7=10,則S9=( )
A.45 B.50 C.55 D.90 組卷:10引用:2難度:0.7 -
3.已知數列{an}為等差數列,a1+a3+a5=15,a4=7,則s6的值為( )
A.30 B.35 C.36 D.24 組卷:109引用:1難度:0.9 -
4.等差數列an中,若a1,a2011為方程x2-10x+16=0的兩根,則a2+a1006+a2010等于( )
A.10 B.15 C.20 D.40 組卷:65引用:18難度:0.9 -
5.數列{an},a1=1,an+an+1=2n,則數列{an+1-an}的前10項和T10=( )
A.0 B.5 C.10 D.20 組卷:35引用:1難度:0.9 -
6.在等比數列an,
,則首項a1=( )a3=12,S3=32A. 14B.-1 C. 或212D. -22組卷:65引用:1難度:0.9 -
7.若等比數列{an}的前n項和為Sn=3n+1+a,則常數a的值等于( )
A. -13B.-1 C. 13D.-3 組卷:33引用:7難度:0.9 -
8.數列{an}的各項均為正數,Sn為其前n項和,對于任意n∈N*,總有an,Sn,an2成等差數列.設數列{bn}的前n項和為Tn,且bn=
,則對任意實數x∈(1,e](e是常數,e=2.71828…)和任意正整數n,Tn<( )lnnxa2nA.1 B.2 C.3 D.4 組卷:76引用:4難度:0.5 -
9.若數列{an}的前n項和Sn=3n+1-a,那么要使{an}為等比數列,實數a的值為( )
A.3 B.0 C.-3 D.不存在 組卷:31引用:2難度:0.9 -
10.等差數列{an}中,a1=2,公差d≠0,且a1、a3、a11恰好是某等比數列的前三項,那么該等比數列的公比為( )
A.2 B. 12C. 14D.4 組卷:137引用:1難度:0.7 -
11.數列{an}中,a2=2,a6=0且數列{
}是等差數列,則a4=( )1an+1A. 12B. 13C. 14D. 16組卷:89引用:16難度:0.9
三、解答題(共15小題,滿分194分)
-
34.已知等差數列{an}滿足:a1=8,a5=0.數列{bn}的前n項和為
Sn=2n-1-12(n∈N*)
(1)求數列{an}和{bn}的通項公式;
(2)令,試問:是否存在正整數n,使不等式bncn+1>bn+cn成立?若存在,求出相應n的值;若不存在,請說明理由.cn=2an組卷:45引用:6難度:0.5 -
35.已知數列{an}中,a1=1,an=
an-1+n(n≥2,n∈N*).且bn=2nn-1+λ為等比數列,ann
(Ⅰ)求實數λ及數列{bn}、{an}的通項公式;
(Ⅱ)若Sn為{an}的前n項和,求Sn;
(Ⅲ)令cn=,數列{cn}前n項和為Tn.求證:對任意n∈N*,都有Tn<3.bn(bn-1)2組卷:89引用:1難度:0.1