2022-2023學年江蘇省鹽城市射陽中學高一(下)期中數學試卷
發布:2024/5/13 8:0:8
一、單項選擇題:本大題共8小題,每小題5分,共40分.
-
1.已知a,b∈R,a+3i=(b+i)i(i為虛數單位),則( ?。?/h2>
A.a=1,b=-3 B.a=-1,b=3 C.a=-1,b=-3 D.a=1,b=3 組卷:2575難度:0.8 -
2.下列命題中正確的是( )
A.長方體是正四棱柱 B.圓錐的底面半徑可以比圓錐的母線長 C.用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺 D.四個面都是等邊三角形的四面體是正四面體 組卷:17難度:0.5 -
3.在△ABC中,A=60°,a2=bc,則△ABC一定是( ?。?/h2>
A.銳角三角形 B.鈍角三角形 C.直角三角形 D.等邊三角形 組卷:101引用:5難度:0.7 -
4.歐拉是18世紀最偉大的數學家之一,在很多領域中都有杰出的貢獻.由《物理世界》發起的一項調查表明,人們把歐拉恒等式“eiπ+1=0”與麥克斯韋方程組并稱為“史上最偉大的公式”.其中,歐拉恒等式是歐拉公式:eiθ=cosθ+isinθ的一種特殊情況.根據歐拉公式,若復數z滿足(e2022πi+i)?z=2i,則z的虛部是( )
A.1 B.-1 C. 2D. -2組卷:35難度:0.6 -
5.設平面向量
,a滿足|b|=2a,|2|=3,b,則(a+43b)⊥a在a方向上的投影向量為( ?。?/h2>bA. 2bB. -2bC. 23bD. -23b組卷:175引用:3難度:0.7 -
6.如圖,在△ABC中,已知AB=AC=1,∠A=120°,E,F分別是邊AB,AC上的點,且
,AE=λAB,其中λ,μ∈(0,1),且λ+4μ=1,若線段EF,BC的中點分別為M,N,則AF=μAC的最小值為( )|MN|A. 17B. 37C. 77D. 377組卷:172引用:3難度:0.5 -
7.若sin(α+β)+cos(α+β)=2
cos(α+2)sinβ,則( ?。?/h2>π4A.tan(α-β)=1 B.tan(α+β)=1 C.tan(α-β)=-1 D.tan(α+β)=-1 組卷:7114引用:18難度:0.6
四、解答題:本大題共6小題,共10+12×5=70分,請在答題卡指定區域內作答,解答時應寫出必要的文字說明,證明過程或演算步驟.
-
21.國家邊防安全條例規定:當外輪與我國海岸線的距離小于或等于d海里時,就會被警告.如圖,設A,B是相距s海里的兩個觀察站,滿足
,一外輪在P點,測得∠BAP=α,∠ABP=β.s=33d
(1)當,α=π6時,該外輪是否被警告?β=2π3
(2)當時,問α處于什么范圍內外輪不被警告?α+β=5π6組卷:38引用:2難度:0.6 -
22.已知△ABC為銳角三角形,設角A,B,C所對的邊分別為a,b,c,R為△ABC外接圓半徑.
(1)若R=1,且滿足sinBsinC=(sin2B+sin2C-sin2A)tanA,求b2+c2的取值范圍;
(2)若b2+c2=2aRcosA+a2,求tanA+tanB+tanC的最小值.組卷:196引用:4難度:0.4