2020學年人教新版九年級上學期《第24章 圓》中考真題套卷(5)
發布:2024/4/20 14:35:0
一、選擇題(共10小題)
-
1.如圖,在⊙O中,直徑CD⊥弦AB,則下列結論中正確的是( )
A.AC=AB B.∠C= ∠BOD12C.∠C=∠B D.∠A=∠BOD 組卷:6778引用:84難度:0.9 -
2.用反證法證明時,假設結論“點在圓外”不成立,那么點與圓的位置關系只能是( )
A.點在圓內 B.點在圓上 C.點在圓心上 D.點在圓上或圓內 組卷:1067引用:11難度:0.9 -
3.如圖所示,矩形紙片ABCD中,AD=6cm,把它分割成正方形紙片ABFE和矩形紙片EFCD后,分別裁出扇形ABF和半徑最大的圓,恰好能作為一個圓錐的側面和底面,則AB的長為( )
A.3.5cm B.4cm C.4.5cm D.5cm 組卷:3355引用:20難度:0.8 -
4.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=7,點D在邊BC上,CD=3,⊙A的半徑長為3,⊙D與⊙A相交,且點B在⊙D外,那么⊙D的半徑長r的取值范圍是( )
A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8 組卷:1956引用:8難度:0.7 -
5.如圖,已知PA,PB是⊙O的兩條切線,A,B為切點,線段OP交⊙O于點M.給出下列四種說法:
①PA=PB;
②OP⊥AB;
③四邊形OAPB有外接圓;
④M是△AOP外接圓的圓心.
其中正確說法的個數是( )A.1 B.2 C.3 D.4 組卷:4179引用:24難度:0.7 -
6.《九章算術》是我國古代第一部自成體系的數學專著,代表了東方數學的最高成就.它的算法體系至今仍在推動著計算機的發展和應用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓柱形木材的直徑是多少?”
如圖所示,請根據所學知識計算:圓柱形木材的直徑AC是( )A.13寸 B.20寸 C.26寸 D.28寸 組卷:2751引用:15難度:0.7 -
7.如圖,拋物線y=
x2-4與x軸交于A、B兩點,P是以點C(0,3)為圓心,2為半徑的圓上的動點,Q是線段PA的中點,連接OQ,則線段OQ的最大值是( )14A.3 B. 412C. 72D.4 組卷:7205引用:45難度:0.6 -
8.如圖,⊙O的直徑AB=6,若∠BAC=50°,則劣弧AC的長為( )
A.2π B. 8π3C. 3π4D. 4π3組卷:2841引用:7難度:0.5 -
9.如圖,在菱形ABCD中,點E是BC的中點,以C為圓心、CE為半徑作弧,交CD于點F,連接AE、AF.若AB=6,∠B=60°,則陰影部分的面積為( )
A.9 -3π3B.9 -2π3C.18 -9π3D.18 -6π3組卷:6770引用:24難度:0.4 -
10.如圖,在矩形ABCD中,AB=6,AD=8,點O在對角線BD上,以OB為半徑作⊙O交BC于點E,連接DE,若DE是⊙O的切線,此時⊙O的半徑為( )
A.2 B. 52C. 3516D. 2110組卷:2341引用:11難度:0.3
三、解答題(共10小題)
-
29.如圖,四邊形ABCD是矩形(AB<BC),要在矩形ABCD內作一個以AB為邊的正方形ABEF,某位同學的作法如下:
①作∠ABC的平分線BM.BM交AD于點F;
②以點B為圓心,BA長為半徑畫弧,交BC于點E,連接EF.
(1)求證:四邊形ABEF是正方形;
(2)若AB=5,求圖中陰影部分的面積.組卷:210引用:5難度:0.5 -
30.如圖,已知△ABC,∠ACB=90°,AC<BC,點D為AB的中點,過點D作BC的垂線,垂足為點F,過點A、C、D作⊙O交BC于點E,連接CD、DE.
(1)求證:DF為⊙O的切線;
(2)若AC=3,BC=9,求DE的長.組卷:1847引用:2難度:0.4