2022-2023學年北京十一晉元中學九年級(上)開學數學試卷
發布:2024/4/20 14:35:0
一、選擇題(共20分,每小題2分)
-
1.一元二次方程3x2-4x-5=0的二次項系數、一次項系數、常數項分別是( )
A.3,-4,-5 B.3,-4,5 C.3,4,5 D.3,4,-5 組卷:578引用:19難度:0.9 -
2.用配方法解方程x2-6x+2=0時,下列配方正確的是( )
A.(x-3)2=9 B.(x-3)2=7 C.(x-9)2=9 D.(x-9)2=7 組卷:53引用:5難度:0.9 -
3.已知關于x的方程x2-6x+m-1=0沒有實數根,則m的取值范圍是( )
A.m<10 B.m=10 C.m>10 D.m≥10 組卷:1756引用:9難度:0.7 -
4.在?ABCD中,∠A=70°,則∠B的度數為( )
A.110° B.100° C.70° D.20° 組卷:338引用:12難度:0.9 -
5.將拋物線y=2x2向左平移1個單位后得到的拋物線表達式是( )
A.y=2x2-1 B.y=2x2+1 C.y=2(x+1)2 D.y=2(x-1)2 組卷:218引用:5難度:0.6 -
6.設A(-2,y1),B(1,y2),C(2,y3)在拋物線y=-(x+1)2+5上,則y1,y2,y3的關系為( )
A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2 組卷:74引用:1難度:0.5 -
7.二次函數y=ax2+bx+c的圖象如圖所示,下列結論中錯誤的是( )
A.abc>0 B.a+b+c<0 C.2a+b<0 D.當y<0時,x>-2 組卷:221引用:1難度:0.6 -
8.如圖,DE為△ABC的中位線,點F在DE上,且∠AFB=90°,若AB=6,BC=9,則EF的長為( )
A.1 B.1.5 C.3 D.4.5 組卷:596引用:3難度:0.5 -
9.將矩形紙片ABCD按如圖所示的方式折疊,得到菱形AECF.若AB=3,則BC的長為( )
A.1 B.2 C. 2D. 3組卷:2179引用:104難度:0.9
三、解答題(共60分,第21題10分,第22、23每題5分,第24題6分,第25-27每題7分,28題6分,29題7分)
-
28.閱讀下面材料:
小元遇到這樣一個問題:如圖1,在正方形ABCD中,點E、F分別為DC、BC邊上的點,∠EAF=45°,連結EF,設DE=a,EF=b,FB=c,則把關于x的一元二次方程ax2-bx+c=0叫做正方形ABCD的關聯方程,正方形ABCD叫做方程ax2-bx+c=0的關聯四邊形.
探究方程ax2-bx+c=0是否存在常數根t.
小元是這樣思考的:要想解決這個問題,首先應想辦法把這些分散的線段集中到同一條線段上.他先后嘗試了平移、翻折、旋轉的方法,發現通過旋轉可以解決此問題.他的方法是把△ADE繞點A順時針旋轉90°得到△ABG(如圖2),此時GF即是DE+BF.
請回答:t=.
參考小元得到的結論和思考問題的方法,解決下列問題:
(1)如圖1,若AD=10,DE=4,則正方形ABCD的關聯方程為 ;
(2)正方形ABCD的關聯方程是2x2-bx+3=0,則正方形ABCD的面積=.組卷:575引用:3難度:0.1 -
29.在平行四邊形ABCD中,E是AD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=∠EAB,連接AG.
(1)如圖①,當EF與AB相交時,若∠EAB=60°,求證:EG=AG+BG;
(2)如圖②,當EF與CD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數量關系,并證明你的結論.組卷:5537引用:10難度:0.1