2022-2023學年河南省鶴壁外國語中學九年級(上)第二次月考數學試卷(B卷)
發布:2024/8/1 8:0:9
一、選擇題(每題3分,共30分)
-
1.下列二次根式中,與
是同類二次根式的是( )3A. 24B. 32C. 96D. 12組卷:35引用:15難度:0.9 -
2.要使
有意義,則x的取值范圍是( )x+2xA.x>-2 B.x≠0 C.x≥-2且x≠0 D.x>-2且x≠0 組卷:671引用:7難度:0.9 -
3.已知方程x2+bx+a=0有一個根是-a(a≠0),則下列代數式的值恒為常數的是( )
A.ab B. abC.a+b D.a-b 組卷:1081引用:71難度:0.7 -
4.下面兩個圖形中一定相似的是( )
A.兩個長方形 B.兩個等腰三角形 C.有一個角都是50°的兩個直角三角形 D.兩個菱形 組卷:52引用:3難度:0.9 -
5.下列各式中,屬于最簡二次根式的是( )
A. 13B. 3C. 32D. 20組卷:11引用:3難度:0.8 -
6.如圖所示,長為8cm,寬為6cm的矩形中,截去一個矩形(圖中陰影部分),如果剩下矩形與原矩形相似,那么剩下矩形的面積是( )
A.28cm2 B.27cm2 C.21cm2 D.20cm2 組卷:834引用:34難度:0.9 -
7.已知線段m,n,p,q的長度滿足等式mn=pq,將它改成比例式的形式,錯誤的是( )
A. =mpqnB. =mnpqC. =pmnqD. =qmnp組卷:266引用:12難度:0.9 -
8.已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠ADE=90°,如圖所示放置,邊AE,AD與BC交于點M,N.則圖中一定相似的三角形有( )對.
A.2 B.3 C.4 D.5 組卷:265引用:4難度:0.6
三、解答題。(共8道題,75分)
-
23.一數學興趣小組為了測量校園內燈柱AB的高度,設計了以下三個方案:
方案一:在操場上點C處放一面平面鏡,從點C處后退1m到點D處,恰好在平面鏡中看到燈柱的頂部A點的像;再將平面鏡向后移動4m(即FC=4m)放在F處.從點F處向后退1.5m到點H處,恰好再次在平面鏡中看到燈柱的頂部A點的像,測得的眼睛距地面的高度ED、GH為1.5m、已知點B,C,D,F,H在同一水平線上,且GH⊥FH,ED⊥CD,AB⊥BH.(平面鏡的大小忽略不計)
方案二:利用標桿CD測量燈柱的高度.已知標桿CD高1.5m,測得DE=2m,CE=2.5m.
方案三:利用三角板的邊CE保持水平,并且邊CE與點M在同一直線上.已知兩條邊CE=0.4m,EF=0.2m,測得邊CE離地面距離DC=1.5m.
三種方案中,方案 不可行,請選擇可行的方案求出燈柱的高度.組卷:95引用:1難度:0.5 -
24.類比轉化、從特殊到一般等思想方法,在數學學習和研究中經常用到,如下是一個案例,請補充完整.
原題:如圖(1),在正方形ABCD中,對角線AC、BD相交于點O,點E是BC邊上一點,AE與BD交于點G,過點E作EF⊥AE交AC于點F,若=2,求BECE的值.EFEG
(1)嘗試探究
在圖(1)中,過點E作EM⊥BD于點M,作EN⊥AC于點N,則EM和EN的數量關系是,的值是.EFEG
(2)類比延伸
如圖(2),在原題的條件下,若=n(n>0),BECE的值是(用含n的代數式表示),試寫出解答過程.EFEG
(3)拓展遷移
如圖(3),在矩形ABCD中,過點B作BH⊥AC于點O,交AD于點H,點E是BC邊上一點,AE與BH相交于點G,過點E作EF⊥AE交AC于點F若,BECE=a=b(a>0,b>0),則BCAB的值是(用含a,b的代數式表示).EFEG組卷:948引用:3難度:0.3