2022-2023學年安徽省六安市毛坦廠中學東部新城校區高一(下)期中數學試卷
發布:2024/7/8 8:0:10
一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項是符合題目要求的。
-
1.已知復數z=m(m-1)+mi為純虛數,則實數m的值為( )
A.-1 B.1 C.1或-1 D.-1或0 組卷:65引用:7難度:0.8 -
2.設集合A={x|x-2≥0},B={x|x2-2x-8<0},全集U=R,則B∪?UA=( )
A.(4,+∞) B.(-∞,4) C.[4,+∞) D.(-∞,-4] 組卷:135引用:5難度:0.7 -
3.已知tanα=2,則
的值為( )6sinα+cosα3sinα-2cosαA.-4 B. 134C. -134D. ±134組卷:480引用:3難度:0.9 -
4.下列說法錯誤的是( )
A.球體是旋轉體 B.圓柱的母線平行于軸 C.斜棱柱的側面中沒有矩形 D.用平面截正棱錐所得的棱臺叫做正棱臺 組卷:118引用:8難度:0.6 -
5.方程x+lgx=3的解所在區間是( )
A.(0,1) B.(1,2) C.(2,3) D.(0,2) 組卷:89引用:3難度:0.9 -
6.若a<0,則a+
( )1aA.有最小值2 B.有最大值2 C.有最小值-2 D.有最大值-2 組卷:91引用:10難度:0.9 -
7.在△ABC中,內角A、B、C的對邊長分別為a、b、c,已知
=3cosAcosC,且a2-c2=2b,則b=( )acA.4 B.3 C.2 D.1 組卷:434引用:7難度:0.9
四、解答題:本題共6小題,共70分。解答應寫出文字說明、證明過程或演算步驟。
-
21.對于定義在D上的函數f(x),如果存在實數x0,使得f(x0)=x0,那么稱x0是函數f(x)的一個不動點.已知函數
.f(x)=log2[a?4x-12-(a-1)2x-1+a2+14]
(1)若a=0,求f(x)的不動點;
(2)若函數f(x)恰有兩個不動點x1,x2,且0<x1<x2,求正數a的取值范圍.組卷:43引用:4難度:0.5 -
22.如圖,某小區有一塊空地△ABC,其中AB=50,AC=50,∠BAC=90°,小區物業擬在中間挖一個小池塘△AEF,E,F在邊BC上(E,F不與B,C重合,且E在B,F之間),且
.∠EAF=π4
(1)若,求EF的值;BE=102
(2)為節省投入資金,小池塘△AEF的面積需要盡可能的小.設∠EAB=θ,試確定θ的值,使得△AEF的面積取得最小值,并求出△AEF面積的最小值.組卷:613引用:9難度:0.3