2023年重慶市九龍坡區高考數學三模試卷
發布:2024/12/31 13:0:2
一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.已知集合M={x|x2-2x≤0},N={x|log2(x-1)<1},則M∩N=( )
A.[0,2] B.(1,2] C.(0,3) D.[2,3) 組卷:49引用:2難度:0.8 -
2.設z1,z2是方程x2+x+1=0在復數范圍內的兩個解,則( )
A. |z1-z2|=2B. |z1|=2C.z1+z2=1 D. z31=z32=1組卷:68引用:2難度:0.7 -
3.“x>2”是“
”的( )2x-42x>3A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要分件 組卷:58引用:7難度:0.8 -
4.“帷幄”是古代打仗必備的帳篷,又稱“幄帳”.如圖是一種幄帳示意圖,帳頂采用“五脊四坡式”,四條斜脊的長度相等,一條正脊平行于底面.若各斜坡面與底面所成二面角的正切值均為
,底面矩形的長與寬之比為5:3,則正脊與斜脊長度的比值為( )12A. 35B. 89C. 910D.1 組卷:433引用:6難度:0.5 -
5.已知變量y關于x的回歸方程為y=ebx-0.6,若對y=ebx-0.6兩邊取自然對數,可以發現lny與x線性相關,現有一組數據如下表所示:
x 1 2 3 4 5 y e e3 e4 e6 e7 A.9 B.8 C.e9 D.e8 組卷:283引用:5難度:0.7 -
6.已知雙曲線C:
-x2a2=1(a>0,b>0)的左,右頂點分別是A1,A2,圓x2+y2=a2與C的漸近線在第一象限的交點為M,直線A1M交C的右支于點P,若△MPA2是等腰三角形,且∠PA2M的內角平分線與y軸平行,則C的離心率為( )y2b2A.2 B. 2C. 3D. 5組卷:307引用:5難度:0.6 -
7.已知
均為單位向量,且夾角為a,b,若向量π3滿足c,則(c-2a)?(c-b)=0的最大值為( )|c|A. 7+32B. 7-32C. 11+72D. 7+32組卷:96引用:2難度:0.6
四、解答題:本大題共6小題,共70分.解答應寫出文字說明,證明過程或演算步驟.
-
21.已知橢圓
的左、右焦點分別為F1,F2,離心率E:x2a2+y2b2=1(a>b>0),M為橢圓上一動點,△MF1F2面積的最大值為e=32.3
(1)求橢圓E的標準方程;
(2)設點N為橢圓E與y軸負半軸的交點,不過點N且不垂直于坐標軸的直線l交橢圓E于S,T兩點,直線NS,NT分別與x軸交于C,D兩點,若C,D的橫坐標之積是2.問:直線l是否過定點?如果是,求出定點坐標,如果不是,請說明理由.組卷:151引用:3難度:0.2 -
22.已知函數f(x)=[x2+(a-2)x+2-a]ex-1,a∈R.
(Ⅰ)討論函數f(x)單調性;
(Ⅱ)當a=0時,若函數g(x)=f(x)-m(x-1)-1在[0,+∞)有兩個不同零點,求實數m的取值范圍.組卷:114引用:6難度:0.2