試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2020-2021學年甘肅省平涼市靜寧一中實驗班高一(下)第三次月考數學試卷(理科)

          發布:2024/5/23 8:0:8

          一.選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)

          • 1.已知數列{an}滿足an+an+2=2an+1(n∈N*),且a3=2,a5=8,則a7=(  )

            組卷:969引用:9難度:0.8
          • 2.若直線l的方向向量為
            a
            ,平面α的法向量為
            n
            ,能使l∥α的是(  )

            組卷:1296引用:28難度:0.7
          • 3.已知數列{an}的通項公式為an=26-2n,要使數列{an}的前n項和Sn,最大,則n的值為(  )

            組卷:59引用:5難度:0.7
          • 4.已知
            a
            =
            1
            3
            |
            b
            |
            =
            3
            |
            a
            +
            2
            b
            |
            =
            4
            2
            ,記
            a
            b
            夾角為θ,則cos
            π
            2
            +
            2
            θ
            為(  )

            組卷:420引用:3難度:0.5
          • 5.已知x、y滿足不等式組
            x
            0
            x
            -
            y
            0
            4
            x
            +
            3
            y
            14
            ,設(x+2)2+(y+1)2的最小值為ω,則函數f(x)=sin(ωt+
            π
            6
            )的最小正周期為(  )

            組卷:71引用:2難度:0.6
          • 6.在如圖所示的正方體ABCD-A1B1C1D1中,E是C1D1的中點,則異面直線DE與AC所成角的余弦值為(  )

            組卷:57引用:5難度:0.6
          • 7.在正項等比數列{an}中,a3a7=4,數列{log2an}的前9項之和為(  )

            組卷:135引用:8難度:0.5

          三.解答題(共70分,解答應寫出文字說明、證明過程或演算步驟.)

          • 21.已知函數
            f
            x
            =
            sinxsin
            x
            +
            π
            6
            +
            co
            s
            2
            x
            -
            π
            12
            -
            1
            2

            (1)求函數f(x)的單調遞減區間;
            (2)已知銳角△ABC的內角A,B,C的對邊分別為a,b,c,且
            f
            B
            2
            =
            3
            2
            b
            =
            3
            ,求acosB-bcosC的取值范圍.

            組卷:102引用:5難度:0.5
          • 22.設數列{an}的前n項和為Sn,滿足:Sn=
            n
            a
            1
            +
            a
            n
            2
            ,數列{bn}滿足:b1+3b2+32b3+…+3n-1bn=
            n
            3

            (1)求證:數列{an}為等差數列;
            (2)若a1=1,a2=2,求數列
            {
            a
            n
            b
            n
            }
            的前n項和Tn

            組卷:180引用:2難度:0.6
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正