人教A版(2019)必修第一冊《2.3 二次函數與一元二次方程、不等式》2021年同步練習卷(11)
發布:2024/4/20 14:35:0
一、單選題
-
1.不等式x2-4x+3<0的解集是( )
A.{x|1<x<3} B.{x|x<0} C.{x|x<5} D.{x|x>7} 組卷:118引用:3難度:0.7 -
2.已知不等式x2+ax+4>0的解集為R,則a的取值范圍是( )
A.[-4,4] B.(-4,4) C.(-∞,-4]∪[4,+∞) D.(-∞,-4)∪[4,+∞) 組卷:38引用:1難度:0.7 -
3.不等式ax2-x+c>0的解集為{x|-2<x<1},則函數y=ax2+x+c的圖象大致為( )
A. B. C. D. 組卷:235引用:29難度:0.9 -
4.設集合M={x||x|≤2},N={x|x2-2x-3<0},則集合M∩N=( )
A.{x|-1≤x<2} B.{x|-1<x≤2} C.{x|-2<x≤3} D.{x|-2≤x<3} 組卷:123引用:3難度:0.8 -
5.已知命題p:?x∈R,x2+a<0,那么“a≤0”是“p為真命題”的( )條件.
A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要 組卷:330引用:2難度:0.7 -
6.若“?x∈R,使得x2-mx+1<0”是假命題,則實數m的取值范圍是( )
A.(-2,2) B.[-2,2] C.(-∞,-2)∪(2,+∞) D.(-∞,-2]∪[2,+∞) 組卷:52引用:2難度:0.7 -
7.已知集合A={x|x2+4x-12≤0},B={x|x<a},若集合A?B,則實數a的取值范圍是( )
A.(-6,+∞) B.[-6,+∞) C.(2,+∞) D.[2,+∞) 組卷:772引用:3難度:0.7
四、解答題
-
21.已知命題:“?x∈R,x2-x-m>0恒成立“是真命題,
(1)求實數m的取值集合B;
(2)設不等式(x-3a)(x-a-2)<0的解集為A,若A∪B=B,求實數a的取值范圍.組卷:55引用:2難度:0.5 -
22.已知函數f(x)=x2+2x+1.
(1)求關于x的不等式f(x)≥b2(b≥0)的解集;
(2)若不等式[f(x)]2-2mf(x)+m2-1≥0對于任意x∈[-3,2]都成立,求m的取值范圍.組卷:90引用:2難度:0.5