試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2018-2019學年四川省成都外國語學校高二(上)入學數學試卷(文科)

          發布:2024/10/25 19:30:2

          一、選擇題(本大題12個小題,每題5分,共60分,請將答案涂在答題卡上)

          • 1.已知a,b為非零實數,且a<b,則下列不等式一定成立的是(  )

            組卷:51引用:2難度:0.8
          • 2.下列四個方程表示對應的四條直線,其中傾斜角為
            π
            4
            的直線是(  )

            組卷:18引用:2難度:0.9
          • 3.△ABC中,a,b,c分別是角A,B,C所對應的邊,B=60°,
            b
            =
            4
            3
            ,A=30°,則a=(  )

            組卷:132引用:3難度:0.8
          • 4.在等差數列{an}中,Sn表示{an}的前n項和,若a3+a6=3,則S8的值為(  )

            組卷:1122引用:9難度:0.5
          • 5.設m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的命題是(  )

            組卷:120引用:7難度:0.7
          • 6.若直線2mx+y+6=0與直線(m-3)x-y+7=0平行,則m的值為(  )

            組卷:3663引用:9難度:0.9
          • 7.已知
            sin
            α
            -
            π
            4
            =
            5
            5
            α
            π
            2
            5
            π
            4
            ,則sinα=(  )

            組卷:145引用:4難度:0.7

          三、解答題:(本大題共6小題,共70分,請將答案寫在答題卡上,解答應寫出文字說明,證明過程或演算步驟)

          • 21.已知數列{an}是等差數列,其前n項和為Sn,且a2=3,S4-S2=12.數列{bn}是各項均為正數的等比數列,且b1=a2-1,b3=a5-a1
            (1)求數列{an}及數列{bn}的通項公式;
            (2)若cn=
            a
            n
            b
            n
            ,設數列{cn}的前n項和為Tn,求證:
            1
            2
            ≤Tn<3.

            組卷:35引用:2難度:0.5
          • 22.設數列{an}的前n項和為Sn,已知2Sn=an+1-2n+1+1(n∈N*),且a2=5.
            (1)證明{
            a
            n
            2
            n
            +1}為等比數列,并求數列{an}的通項公式;
            (2)設bn=log3(an+2n),且Tn=
            1
            b
            2
            1
            +
            1
            b
            2
            2
            +
            1
            b
            2
            3
            +
            +
            1
            b
            2
            n
            ,證明Tn<2;
            (3)在(2)小問的條件下,若對任意的n∈N*,不等式bn(1+n)-λn(bn+2)-6<0恒成立,試求實數λ的取值范圍.

            組卷:169引用:4難度:0.4
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正