2022-2023學年江西省宜春市上高中學高二(下)期中數學試卷
發布:2024/7/6 8:0:9
一、單選題(每題5分,共40分)
-
1.已知函數f(x)=x2lnx+1-f'(1)x,則函數f(x)的圖象在點(1,f(1))處的切線斜率為( )
A. 12B.- 12C. -3e12D.3e- 12組卷:180引用:4難度:0.7 -
2.已知等差數列{an}的前n項和為Sn,a1=1,S3=18,則S6=( )
A.54 B.71 C.80 D.81 組卷:356引用:4難度:0.8 -
3.已知等比數列{an}的前n項和為Sn,公比為q,且Sn=an+1-1,則( )
A.a1=2 B.S2=2 C.q=1 D.q=2 組卷:66引用:2難度:0.7 -
4.現有茶壺九只,容積從小到大成等差數列,最小的三只茶壺容積之和為0.5升,最大的三只茶壺容積之和為2.5升,則從小到大第5只茶壺的容積為( )
A.0.25升 B.0.5升 C.1升 D.1.5升 組卷:242引用:6難度:0.7 -
5.已知數列{an}的各項均為正數,且a1=1,對于任意的n∈N*,均有an+1=2an+1,bn=2log2(1+an)-1.若在數列{bn}中去掉{an}的項,余下的項組成數列{cn},則c1+c2+?+c20=( )
A.599 B.569 C.554 D.568 組卷:83引用:7難度:0.8 -
6.已知F1,F2為雙曲線C:
=1(a>0,b>0)的左,右焦點,過F2作C的一條漸近線的垂線,垂足為P,且與C的右支交于點Q,若OQ∥F1P(O為坐標原點),則C的離心率為( )x2a2-y2b2A. 2B. 3C.2 D.3 組卷:121引用:4難度:0.5 -
7.已知數列{an}滿足:a1=2,an+1Sn+(Sn-1)2=0,(n∈N*),其中Sn為{an}的前n項和.若對任意的n均有(S1+1)?(S2+1)?…?(Sn+1)≥kn2恒成立,則正數k的最大值為( )
A. 158B.2 C. 178D.3 組卷:61引用:1難度:0.6
四、解答題(共70分)
-
21.已知橢圓
+y2=1的左焦點為F,O為坐標原點.x22
(1)求過點F、O,并且與拋物線y2=8x的準線相切的圓的方程;
(2)設過點F且不與坐標軸垂直的直線交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點G,求點G的橫坐標的取值范圍.組卷:209引用:4難度:0.4 -
22.已知函數f(x)=6lnx-m(x-2),g(x)=2x3-tx2+5,且g′(2+x)=g′(2-x).
(1)當m=1時,求函數f(x)在x=1處的切線方程;
(2)若f(x)≤6ln2恒成立,g(x)=2x3-tx2+5在(n,n+3)上存在最小值,求的取值范圍.nm組卷:12引用:3難度:0.4