2022年海南省海口市華僑中學高考數(shù)學第五次模擬試卷
發(fā)布:2024/4/20 14:35:0
一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求.
-
1.集合A={-1,2},B={x|ax-2=0},若B?A,則由實數(shù)a組成的集合為( )
A.{-2} B.{1} C.{-2,1} D.{-2,1,0} 組卷:487引用:7難度:0.9 -
2.已知-2+i是關于x的方程2x2+mx+n=0的一個根,其中m,n∈R,則m+n=( )
A.18 B.16 C.9 D.8 組卷:44引用:3難度:0.8 -
3.已知平面向量
,a的夾角為b,且π3,|a|=2,則b=(-1,3)在a方向上的投影向量為( )bA. (32,12)B. (-32,12)C. (-12,32)D. (12,32)組卷:116引用:2難度:0.7 -
4.筒車是我國古代發(fā)明的一種水利灌溉工具,既經濟又環(huán)保,明代科學家徐光啟在《農政全書》中用圖1描繪了筒車的工作原理.假定在水流穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運動.將筒車抽象為一個幾何圖形(圓),筒車的半徑為2m,筒車的軸心O到水面的距離為1m,筒車每分鐘按逆時針轉動2圈.規(guī)定:盛水筒M對應的點P從水中浮現(xiàn)(即P0時的位置)時開始計算時間,設盛水筒M從P0運動到點P時所用時間為t(單位:s),且此時點P距離水面的高度為h(單位:m).若以筒車的軸心O為坐標原點,過點O的水平直線為x軸建立平面直角坐標系xOy(如圖2),則h與t的函數(shù)關系式為( )
A. ,t∈[0,+∞)h=2sin(π15t-π6)+1B. ,t∈[0,+∞)h=2sin(π15t+π6)+1C. ,t∈[0,+∞)h=2sin(πt-π6)+1D. ,t∈[0,+∞)h=2sin(πt+π6)+1組卷:182引用:13難度:0.5 -
5.函數(shù)f(x)=ln(x2-2x-8)的單調遞增區(qū)間是( )
A.(-∞,-2) B.(-∞,-1) C.(1,+∞) D.(4,+∞) 組卷:11878引用:49難度:0.7 -
6.我國著名數(shù)學家華羅庚曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結合百般好,隔裂分家萬事休.”在數(shù)學的學習和研究中,常用函數(shù)的圖象來研究函數(shù)的性質,也常用函數(shù)的解析式來研究函數(shù)圖象的特征.我們從這個商標
中抽象出一個圖象如圖,其對應的函數(shù)可能是( )
A. f(x)=1|x-1|B. f(x)=1||x|-1|C. f(x)=1x2-1D. f(x)=1x2+1組卷:775引用:55難度:0.8 -
7.某三棱柱的平面展開圖如圖所示,網格中的小正方形的邊長均為1,則在原三棱柱中,異面直線BK和DH所成角的余弦值為( )
A. 310B. 8525C. 4525D. 25組卷:11引用:1難度:0.6
四.解答題共6道大題,第17題10分,其余每題12分,共70分
-
21.已知橢圓C:
+y2a2=1(a>b>0)的上下兩個焦點分別為F1,F(xiàn)2,過點F1與y軸垂直的直線交橢圓C于M,N兩點,△MNF2的面積為x2b2,橢圓C的離心率為332
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知O為坐標原點,直線l:y=kx+m與y軸交于點P,與橢圓C交于A,B兩個不同的點,若存在實數(shù)λ,使得+λOA=4OB,求m的取值范圍.OP組卷:1361引用:19難度:0.3 -
22.已知函數(shù)f(x)=2lnx+
-ax(a為常數(shù)).12x2
(1)若函數(shù)f(x)在定義域上單調遞增,求a的取值范圍;
(2)若f(x)存在兩個極值點x1,x2(x1<x2),且x2-x1≤1,求|f(x1)-f(x2)|的取值范圍.組卷:123引用:4難度:0.3