試卷征集
          加入會(huì)員
          操作視頻
          當(dāng)前位置: 試卷中心 > 試卷詳情

          2023年天域全國(guó)名校聯(lián)盟高考數(shù)學(xué)第一次適應(yīng)性試卷

          發(fā)布:2024/4/20 14:35:0

          一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

          • 1.已知集合
            A
            =
            {
            x
            |
            y
            =
            1
            -
            x
            2
            x
            N
            *
            }
            ,B={S|S?A},則A∩B=(  )

            組卷:53引用:1難度:0.9
          • 2.已知正八邊形ABCDEFGH中,|AE|=4,則
            AD
            ?
            BF
            =(  )

            組卷:37引用:1難度:0.7
          • 3.已知體積為π的圓臺(tái),上下底面半徑分別為r、R(r<R),若圓臺(tái)的高h(yuǎn)=R-r,則(  )

            組卷:78引用:1難度:0.7
          • 4.函數(shù)f(x)=4sin(3x+2)+2cos(3x+4)在(0,π)上的零點(diǎn)個(gè)數(shù)為(  )

            組卷:53引用:4難度:0.6
          • 5.已知復(fù)數(shù)
            z
            =
            cos
            2
            π
            2023
            +
            isin
            2
            π
            2023
            ,則(z-1)(z2-1)…(z2022-1)=(  )

            組卷:109引用:4難度:0.6
          • 6.已知實(shí)數(shù)a、b、c滿足a+b-2c=2(b-a)(c-a)-2,則|3a-b-2c|的最小值為(  )

            組卷:122引用:1難度:0.5
          • 7.已知空間中兩條直線l1、l2異面且垂直,平面α∥l1且l2?α,若點(diǎn)P到l1、l2距離相等,則點(diǎn)P在平面α內(nèi)的軌跡為(  )

            組卷:27引用:2難度:0.5

          四、解答題:本大題共6小題,共70分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

          • 21.已知雙曲線C1
            x
            2
            a
            2
            -
            y
            2
            b
            2
            =1,C2
            y
            2
            b
            2
            -
            x
            2
            a
            2
            =1(a≥b>0),設(shè)點(diǎn)A、B在C1上,點(diǎn)O為坐標(biāo)原點(diǎn).
            (1)若a=b=1,求|
            OA
            ?
            OB
            |的最小值;
            (2)設(shè)點(diǎn)P在C2上,直線PA、PB分別與C1相切于點(diǎn)A、B,對(duì)于給定的a、b,在以下結(jié)論中選擇一個(gè)正確的結(jié)論(多選的按第一個(gè)給分),并加以證明:
            ①△OPA和△OPB的面積之和為定值;
            ②△OPA和△OPB的面積之差的絕對(duì)值為定值;
            ③直線AB與雙曲線的兩條漸近線圍成的三角形的面積為定值.

            組卷:57引用:2難度:0.5
          • 22.已知函數(shù)
            f
            x
            =
            1
            +
            2
            lnx
            x
            2

            (1)設(shè)函數(shù)
            g
            x
            =
            e
            kx
            -
            1
            kx
            k
            0
            ,若f(x)≤g(x)恒成立,求k的最小值;
            (2)若方程f(x)=m有兩個(gè)不相等的實(shí)根x1、x2,求證:
            x
            1
            x
            2
            +
            x
            2
            x
            1
            2
            1
            -
            lnm
            m

            組卷:60引用:1難度:0.2
          APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
          本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正