試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2023-2024學年安徽省淮南市興學教育咨詢有限公司高二(上)第一次月考數(shù)學試卷

          發(fā)布:2024/9/4 9:0:9

          一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一個選項是符合題目要求的.

          • 1.直線(a-1)x-(2a-1)y+1=0恒過一定點,則此定點為(  )

            組卷:215引用:5難度:0.8
          • 2.已知直線l:(m+3)x+(m-2)y-m-2=0,點A(-2,-1),B(2,-2),若直線l與線段AB相交,則m的取值范圍為(  )

            組卷:205引用:10難度:0.8
          • 3.若點(a+1,a-1)在圓x2+y2-2ay-4=0的內部(不包括邊界),則a的取值范圍是(  )

            組卷:246引用:5難度:0.9
          • 4.“a=2”是“直線ax+2y-1=0與x+(a-1)y+2=0互相平行”的(  )

            組卷:276引用:7難度:0.9
          • 5.光線通過點A(2,3),在直線l:x+y+1=0上反射,反射光線經過點B(1,1),則反射光線所在直線方程為(  )

            組卷:796引用:8難度:0.6
          • 6.已知三條直線ax+2y+8=0、4x+3y=10和2x-y-10=0中沒有任何兩條平行,但它們不能構成三角形的三邊,則實數(shù)a的值為(  )

            組卷:55引用:4難度:0.7
          • 7.阿波羅尼斯(約公元前262-190年)證明過這樣一個命題:平面內到兩定點距離之比為常數(shù)k(k>0且k≠1)的點的軌跡是圓,后人將這個圓稱為阿氏圓.若平面內兩定點A、B間的距離為2,動點P與A、B距離之比為
            2
            ,當P、A、B不共線時,△PAB面積的最大值是(  )

            組卷:158引用:11難度:0.6

          四、解答題:本題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟.

          • 21.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=
            2
            ,F(xiàn)是BC的中點.
            (Ⅰ)求證:DA⊥平面PAC;
            (Ⅱ)試在線段PD上確定一點G,使CG∥平面PAF,請指出點G在PD上的位置,并加以證明;
            (Ⅲ)求平面PAF與平面PCD夾角的余弦值.

            組卷:99引用:6難度:0.6
          • 22.如圖,四棱臺ABCD-A1B1C1D1中,上、下底面均是正方形,且側面是全等的等腰梯形,AB=2A1B1=4,E、F分別為DC、BC的中點,上下底面中心的連線O1O垂直于上下底面,且O1O與側棱所在直線所成的角為45°.
            (1)求證:BD1∥平面C1EF;
            (2)求點A1到平面C1EF的距離;
            (3)邊BC上是否存在點M,使得直線A1M與平面C1EF所成的角的正弦值為
            3
            22
            22
            ,若存在,求出線段BM的長;若不存在,請說明理由.

            組卷:339引用:13難度:0.5
          APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據(jù),本網將在三個工作日內改正