2013-2014學年廣東省珠海市高三(上)開學摸底數學試卷(文科)
發布:2024/4/20 14:35:0
一、選擇題
-
1.設集合A={x|x>1},B={x|x(x-2)<0},則A∩B等于( )
A.{x|x>2} B.{x|0<x<2} C.{x|1<x<2} D.{x|x<1} 組卷:74引用:22難度:0.9 -
2.下列函數中,既是偶函數又在區間(0,+∞)上單調遞增的函數為( )
A.y=x-1 B.y=log2x C.y=|x| D.y=-x2 組卷:43引用:22難度:0.9 -
3.設i為虛數單位,則復數
等于( )i2+iA. 15+25iB. -15+25iC. 15-25iD. -15-25i組卷:24引用:18難度:0.9 -
4.sin480°的值為( )
A. 12B. 32C. -12D. -32組卷:80引用:16難度:0.9 -
5.中心在原點的雙曲線,一個焦點為
,一個焦點到最近頂點的距離是F(0,3),則雙曲線的方程是( )3-1A. y2-x22=1B. x2-y22=1C. x2-y22=1D. y2-x22=1組卷:60引用:11難度:0.9 -
6.如圖所示,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個直徑為1的圓,那么這個幾何體的全面積為( )
A. 32πB.2π C.3π D.4π 組卷:173引用:61難度:0.9 -
7.經過圓x2-2x+y2=0的圓心且與直線x+2y=0平行的直線方程是( )
A.x+2y-1=0 B.x+2y-2=0 C.x+2y+1=0 D.x+2y+2=0 組卷:118引用:5難度:0.9
三、解答題:本大題共6小題,共80分.解答須寫出文字說明、證明過程和演算步驟.
-
20.已知點M(4,0)、N(1,0),若動點P滿足
.MN?MP=6|NP|
(1)求動點P的軌跡C;
(2)在曲線C上求一點Q,使點Q到直線l:x+2y-12=0的距離最小.組卷:629引用:6難度:0.5 -
21.已知函數f(x)=
+cx+d(a,c,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.13ax3-14x2
(1)求a,c,d的值;
(2)若,解不等式f′(x)+h(x)<0;h(x)=34x2-bx+b2-14
(3)是否存在實數m,使函數g(x)=f′(x)-mx在區間[m,m+2]上有最小值-5?若存在,請求出實數m的值;若不存在,請說明理由.組卷:1779引用:13難度:0.1