試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2022-2023學年江蘇省鎮江市丹陽高級中學高二(下)期中數學試卷

          發布:2024/7/18 8:0:9

          一.單選題(本大題共8小題,每小題5分,共20分.在每小題列出的選項中,選出符合題目的一項)

          • 1.已知等差數列{an}的公差為4,且a2,a3,a6成等比數列,則a14=( ?。?/h2>

            組卷:118引用:3難度:0.8
          • 2.在一次高臺跳水運動中,某運動員在運動過程中的中心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數關系f(t)=-5.9t2+3.8t+12,則運動員在t=1s時瞬時速度為(  )

            組卷:110引用:3難度:0.8
          • 3.袋中有5個球,其中紅黃藍白黑球各一個,甲乙兩人按序從袋中有放回的隨機摸取一球,記事件A:甲和乙至少一人摸到紅球,事件B:甲和乙摸到的球顏色不同,則條件概率P(B|A)=(  )

            組卷:775引用:8難度:0.7
          • 4.
            2
            x
            -
            3
            5
            =
            a
            5
            x
            5
            +
            a
            4
            x
            4
            +
            a
            3
            x
            3
            +
            a
            2
            x
            2
            +
            a
            1
            x
            +
            a
            0
            ,則a3=(  )

            組卷:91難度:0.5
          • 5.設離散型隨機變量X的分布列為
            X 0 1 2 3 4
            P a 0.4 0.1 0.2 0.2
            若離散型隨機變量Y滿足Y=2X+1,則下列結論中正確的是( ?。?/h2>

            組卷:123引用:2難度:0.5
          • 6.《數術記遺》是《算經十書》中的一部,相傳是漢末徐岳所著,該書記述了我國古代14種算法,分別是:積算(即籌算)、太乙算、兩儀算、三才算、五行算、八卦算、九宮算、運籌算、了知算、成數算、把頭算、龜算、珠算和計數.某學習小組有甲、乙、丙、丁、戊五人,該小組要收集九宮算、運籌算、了知算、成數算、把頭算5種算法的相關資料,要求每種算法安排一人,但甲不收集九宮算的資料,乙不收集運籌算的資料,則不同的分配方案種數有( ?。?/h2>

            組卷:41引用:2難度:0.7
          • 7.一百零八塔,位于寧夏吳忠青銅峽市,是始建于西夏時期的喇嘛式實心塔群,是中國現存最大且排列最整齊的喇嘛塔群之一,塔的排列順序自上而下,第一層1座,第二層3座,第三層3座,第四層5座,第五層5座,從第五層開始,每一層塔的數目構成一個首項為5,公差為2的等差數列,總計一百零八座,則該塔共有( ?。?/h2>

            組卷:166難度:0.8

          四、解答題(本大題共6小題,共70分.解答應寫出文字說明,證明過程或演算步驟)

          • 21.已知正項數列{an}滿足a1=1且
            a
            2
            n
            +
            1
            a
            n
            +
            1
            +
            a
            2
            n
            a
            n
            +
            1
            -
            1
            =
            0
            n
            N
            *

            (1)求{an}的通項公式;
            (2)設數列
            {
            2
            n
            a
            n
            }
            的前n項和為Sn,是否存在p、q使
            p
            S
            n
            +
            q
            2
            n
            =
            n
            -
            1
            恒成立,若存在,求出p、q的值;若不存在,請說明理由.

            組卷:79引用:3難度:0.5
          • 22.已知定義在(0,+∞)上的兩個函數f(x)=xex-x,g(x)=lnx.
            (1)求h(x)=x?g(x)的單調區間及極值;
            (2)求函數F(x)=f(x)-g(x)的最小值.

            組卷:60難度:0.6
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正