2022-2023學(xué)年江蘇省南京外國語學(xué)校高二(上)期末數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一.選擇題(共8小題,每題3分,共24分)
-
1.已知等差數(shù)列{an}中,a3+a8=22,a6=7,則a5的值為( )
A.10 B.15 C.20 D.40 組卷:106引用:3難度:0.7 -
2.函數(shù)f(x)=ex+ax在x=0處的切線與直線2x-y-5=0平行,則實(shí)數(shù)a=( )
A.-1 B.1 C. 12D. 14組卷:336引用:4難度:0.8 -
3.已知圓C的圓心在x軸上,且經(jīng)過A(5,2),B(-1,4)兩點(diǎn),則圓C的方程是( )
A.(x+2)2+y2=17 B.(x-2)2+y2=13 C.(x-1)2+y2=20 D.(x+1)2+y2=40 組卷:304引用:6難度:0.9 -
4.下列求導(dǎo)結(jié)果正確的是( )
A.[(1-2x)2]′=2-4x B.(cos )′=-sinπ5π5C. [ln(3x)]′=13xD.(x?cosx)'=cosx-xsinx 組卷:614引用:4難度:0.8 -
5.設(shè)正項等比數(shù)列{an}的前n項和為Sn,且
<1,若a3+a5=20,a3a5=64,則S4=( )an+1anA.63或126 B.252 C.120 D.63 組卷:197引用:8難度:0.9 -
6.設(shè)函數(shù)
,若對任意的x∈[m,+∞),都有f(x)≥-4,則m的最小值是( )f(x)=|x|-1,x∈[-1,+∞)2f(x+2),x∈(-∞,-1)A.-4 B.-6 C. -132D. -112組卷:333引用:3難度:0.5 -
7.已知直線L:
與曲線y=12x+m僅有三個交點(diǎn),則實(shí)數(shù)m的取值范圍是( )C:y=12|4-x2|A. (-2,2)B. (-2,2)C. (1,2)D. (1,3)組卷:103引用:6難度:0.7
四.解答題(共5小題,共48分)
-
20.如圖,已知拋物線y2=2px(p>0),焦點(diǎn)為F,準(zhǔn)線為直線l,P為拋物線上的一點(diǎn),過點(diǎn)P作l的垂線,垂足為點(diǎn)Q.當(dāng)P的橫坐標(biāo)為3時,△PQF為等邊三角形.
(1)求拋物線的方程;
(2)過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),交直線l于點(diǎn)M,交y軸于G.
①若,MA=λ1AF,求證:λ1+λ2為常數(shù);MB=λ2BF
②求的取值范圍.GA?GB組卷:302引用:3難度:0.1 -
21.已知函數(shù)f(x)=xlnx,g(x)=ax2-x(a∈R).
(1)求f(x)的單調(diào)區(qū)間和極值點(diǎn);
(2)求使f(x)≤g(x)恒成立的實(shí)數(shù)a的取值范圍;
(3)當(dāng)時,是否存在實(shí)數(shù)m,使得方程a=18有三個不等實(shí)根?若存在,求出m的取值范圍;若不存在,請說明理由.3f(x)4x+m+g(x)=0組卷:165引用:7難度:0.3