試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2023-2024學年北京市東城區東直門中學高二(上)期中數學試卷

          發布:2024/10/20 0:0:1

          一.選擇題:(本題有12道小題,每小題4分,共48分)

          • 1.已知α∈
            π
            2
            π
            ,且sinα=
            3
            5
            ,則tanα=(  )

            組卷:993引用:10難度:0.8
          • 2.在等差數列{an}中,a2=1,a4=5,則a8=(  )

            組卷:1003引用:11難度:0.7
          • 3.已知數列{an}是公比為正數的等比數列,Sn是其前n項和,a2=2,a4=8,則S7=(  )

            組卷:362引用:3難度:0.8
          • 4.已知α,β是兩個不同的平面,直線m?α,下列命題中正確的是(  )

            組卷:194引用:9難度:0.8
          • 5.向量
            a
            =(2,1,x),
            b
            =(2,y,-1),若|
            a
            |=
            5
            ,且
            a
            b
            ,則x+y的值為(  )

            組卷:507引用:8難度:0.8
          • 6.在△ABC中,a=2,
            B
            =
            π
            3
            ,△ABC的面積等于
            3
            2
            ,則b等于(  )

            組卷:103引用:7難度:0.7
          • 7.設{an}是公差不為0的無窮等差數列,則“{an}為遞增數列”是“存在正整數N0,當n>N0時,an>0”的(  )

            組卷:2274引用:13難度:0.3
          • 8.在平面直角坐標系xOy中,角α以Ox為始邊,終邊與單位圓交于點
            P
            x
            0
            6
            3
            ,則cos2α=(  )

            組卷:597引用:7難度:0.7

          三.解答題:(本題有6小題,共72分)

          • 23.如圖,在多面體ABCDEF中,平面ADEF⊥平面ABCD,四邊形ADEF為正方形,四邊形ABCD為梯形,且AD∥BC,∠BAD=90°,AB=AD=1,BC=3.
            (Ⅰ)求證:AF⊥CD;
            (Ⅱ)求直線BF與平面CDE所成角的正弦值;
            (Ⅲ)線段BD上是否存在點M,使得直線CE∥平面AFM?若存在,求
            BM
            BD
            的值;若不存在,請說明理由.

            組卷:425引用:7難度:0.6
          • 24.設λ為正實數,若各項均為正數的數列{an}滿足:?n∈N*,都有an+1≥an+λ.則稱數列{an}為P(λ)數列.
            (Ⅰ)判斷以下兩個數列是否為P(2)數列:
            數列A:3,5,8,13,21;
            數列B:log25,π,5,10.
            (Ⅱ)若數列{bn}滿足b1>0且bn+1=bn+
            n
            +
            3
            -
            n
            +
            1
            ,是否存在正實數λ,使得數列{bn}是P(λ)數列?若存在,求λ的取值范圍;若不存在,說明理由.
            (Ⅲ)若各項均為整數的數列{an}是P(1)數列,且{an}的前m(m≥2)項和a1+a2+a3+?+am為150,求am+m的最小值及取得最小值時am的所有可能取值.

            組卷:151引用:3難度:0.3
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正