2021-2022學年吉林省長春市南湖實驗中學九年級(上)十一假期作業數學試卷(1)
發布:2024/4/20 14:35:0
一.選擇題
-
1.若關于x的一元二次方程x2-5x+m=0有一個根為x=2,則m的值為( )
A.-6 B.-3 C.6 D.3 組卷:122引用:9難度:0.6 -
2.已知關于x的一元二次方程x2+2m=4x有兩個不相等的實數根,則m的取值范圍是( )
A.m≥2 B.m<2 C.m≥0 D.m<0 組卷:374引用:6難度:0.6 -
3.如圖,∠C=90°,AB=2,以C為圓心的圓過AB的中點D,則AC=( )
A.2 B.3 C. 2D. 3組卷:34引用:1難度:0.7 -
4.如圖,在Rt△ABC中,∠C=90°,∠A=26°,以點C為圓心,BC為半徑的圓分別交AB、AC于點D、點E,則弧BD的度數為( )
A.26° B.64° C.52° D.128° 組卷:4521引用:9難度:0.9 -
5.如圖,A,B是⊙O上的兩個點,BC是弦,若∠B=32°,則∠OAC=( )
A.64° B.58° C.68° D.55° 組卷:71引用:2難度:0.7 -
6.將二次函數y=x2-4x+5的圖象向上平移3個單位,再向左平移2個單位后得到的圖象的頂點坐標是( )
A.(0,4) B.(5,-1) C.(4,4) D.(-1,-1) 組卷:733引用:3難度:0.6 -
7.已知二次函數y=(x-h)2(h為常數),當自變量x的值滿足1≤x≤3時,其對應的函數值y的最小值為1,則h的值為( )
A.2或4 B.0或4 C.2或3 D.0或3 組卷:712引用:6難度:0.6 -
8.二次函數y=2x2-2x+m(0<m<
),如果當x=a時,y<0,那么當x=a-1時,函數值y的取值范圍為( )12A.y<0 B.0<y<m C.m<y<m+4 D.y>m 組卷:143引用:2難度:0.7
-
23.如圖,在Rt△ABC中,∠ACB=90°,AC=3,AB=5.點P從點A出發,以每秒5個單位長度的速度沿AC方向運動,過點P作PQ⊥AB于點Q,當點Q和點B重合時,點P停止運動,以AP和AQ為邊作?APHQ.設點P的運動時間為t秒(t>0).
(1)線段PQ的長為 .(用含t的代數式表示)
(2)當點H落在邊BC上時,求t的值.
(3)當?APHQ與△ABC的重疊部分圖形為四邊形時,設四邊形的面積為S,求S與t之間的函數關系式.
(4)過點C作直線CD⊥AB于點D,當直線CD將?APHQ分成兩部分圖形的面積比為1:7時,直接寫出t的值.組卷:472引用:4難度:0.5 -
24.如圖,函數y=-x2+bx+c的圖象經過點A(m,0),B(0,n)兩點,m,n分別是方程x2-2x-3=0的兩個實數根,且m<n.
(1)求m,n的值以及函數的解析式;
(2)設拋物線y=-x2+bx+c與x軸的另一個交點為C,拋物線的頂點為D,連接AB,BC,BD,CD.求證:△BCD∽△OBA;
(3)對于(1)中所求的函數y=-x2+bx+c;
①當0≤x≤3時,求函數y的最大值和最小值;
②設函數y在t≤x≤t+1內的最大值為p,最小值為q,若p-q=3,求t的值.組卷:418引用:3難度:0.3