2023-2024學年內蒙古赤峰市元寶山一中高一(上)期中數學試卷
發布:2024/10/17 20:0:2
一、單選題
-
1.已知集合A={x|-2<x≤1},B={x|-1<x≤2},則A∩B=( ?。?/h2>
A.(-2,2] B.[-1,2] C.(-1,1] D.(1,2] 組卷:163引用:15難度:0.9 -
2.下列各組函數表示同一函數的是( ?。?/h2>
A. f(x)=x2,g(x)=(x)2B. f(x)=x2,g(x)=|x|C.f(1)=1,g(x)=x0 D. f(x)=x+1,g(x)=x2-1x-1組卷:158引用:12難度:0.9 -
3.下列函數中,在區間(0,+∞)上單調遞增且是奇函數的是( ?。?/h2>
A. y=xB.y=x2 C.y=|x| D. y=x-1x組卷:359引用:17難度:0.7 -
4.設函數
,則f(f(1))=( ?。?/h2>f(x)=f(x-1),x≥0x3-1,x<0A.-2 B.-9 C.-10 D.-11 組卷:27引用:4難度:0.8 -
5.若命題“?x0∈R,使得
成立”是假命題,則實數k的取值范圍是( )k>x20+1A.k>1 B.0<k<1 C.k≤1 D.k≤0 組卷:36難度:0.8 -
6.已知函數y=f(x)的圖象關于x=1對稱,且在(1,+∞)上單調遞增,設
,b=f(2),c=f(3),則a,b,c的大小關系為( ?。?/h2>a=f(-12)A.c<b<a B.b<a<c C.b<c<a D.a<b<c 組卷:105難度:0.9 -
7.已知x,y∈R+,且滿足x+2y=2xy,那么x+4y的最小值為( )
A.3- 2B.3+2 2C.3+ 2D.4 2組卷:1184引用:12難度:0.7
四、解答題
-
21.“綠色低碳、節能減排”是習近平總書記指示下的新時代發展方針.某市一企業積極響應習總書記的號召,采用某項新工藝,把企業生產中排放的二氧化碳轉化為一種可利用的化工產品,以達到減排效果.已知該企業每月的二氧化碳處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數關系式可近似地表示為
,且每處理一噸二氧化碳得到可利用的化工產品價值為100元.y=12x2-300x+125000
(1)該企業每月處理量為多少噸時,才能使其每噸的平均處理成本最低?
(2)該市政府也積極支持該企業的減排措施,試問該企業在該減排措施下每月能否獲利?如果獲利,請求出最大利潤;如果不獲利,則該市政府至少需要補貼多少元才能使該企業在該措施下不虧損?組卷:44難度:0.5 -
22.已知函數
是定義在[-1,1]上的奇函數,且f(x)=ax+b1+x2.f(2)=65
(1)求f(x)的解析式;
(2)先判斷函數f(x)在[-1,1]上的單調性,并證明;
(3)求使f(2m-1)+f(m2-1)<0成立的實數m的取值范圍.組卷:50引用:4難度:0.6