2022-2023學年寧夏銀川市賀蘭一中高一(上)期中數學試卷
發布:2024/12/20 23:30:6
一、單選題(本大題共8小題,共40分.在每小題列出的選項中,選出符合題目的一項)
-
1.已知集合A={x|-1<2-x<4},B={x∈N|1≤x+1≤6},則(?RA)∩B等于( )
A.(3,6] B.(2,5] C.{3,4,5} D.{4,5,6} 組卷:34引用:2難度:0.8 -
2.已知命題p:?x>0,x2-x+1>0,則¬p為( )
A.?x<0,x2-x+1≤0 B.?x>0,x2-x+1≤0 C.?x>0,x2-x+1≤0 D.?x<0,x2-x+1≥0 組卷:123引用:4難度:0.9 -
3.設函數
,則f(f(-1))=( )f(x)=x2-2x,x<0,2x-1,x≥0,A. 12B. -12C.3 D.7 組卷:23引用:4難度:0.8 -
4.下列各組函數中,表示同一函數的是( )
A. 與g(x)=x-1f(x)=x2+xx+1B.f(x)=2|x|與 g(x)=4x2C. 與f(x)=x2g(x)=(x)2D. 與y=x+1x-1y=x2-1組卷:384引用:6難度:0.7 -
5.已知a=20.1,b=0.33,c=0.30.1,則a,b,c的大小關系為( )
A.a<b<c B.c<b<a C.b<c<a D.a<c<b 組卷:574引用:15難度:0.8 -
6.我國著名的數學家華羅庚先生曾說:數缺形時少直觀,形缺數時難入微;數形結合百般好,隔裂分家萬事休.在數學學習和研究中,常用函數的圖象來研究函數的性質.下列函數中,既是奇函數,又在區間(0,+∞)上單調遞增的是( )
A. y=x-1x+1B. y=x+1xC.y=x|x| D.y=|2x| 組卷:49引用:4難度:0.7 -
7.已知
在[1,3]上是減函數,則實數a的取值范圍為( )f(x)=(12)x2-2axA.(-∞,1] B.[1,2] C.[2,3] D.[3,+∞) 組卷:392引用:6難度:0.7
四、解答題(本大題共6小題,共70分.解答應寫出文字說明,證明過程或演算步驟)
-
21.新冠肺炎期間,呼吸機成為緊缺設備,某企業在國家科技的支持下,進行設備升級,生產了一批新型的呼吸機.已知該種設備年固定研發成本為60萬元,每生產一臺需另投入100元,設該公司一年內生產該設備x萬臺,且全部售完,由于產能原因,該設備產能最多為32萬臺,且每萬臺的銷售收入f(x)(單位:萬元)與年產量x(單位:萬臺)的函數關系式近似滿足:
.f(x)=180-2x,0<x≤1870+2650x-27000x2,18<x≤32
(1)寫出年利潤W(x)(萬元)關于年產量x(萬臺)的函數解析式.(年利潤=年銷售收入-總成本);
(2)當年產量為多少萬臺時,該公司獲得的利潤最大?組卷:87引用:5難度:0.7 -
22.已知函數f(x)=3x+λ?3-x(λ∈R).
(1)是否存在實數λ使得f(x)為奇函數?若存在,求出實數λ,若不存在,請說明理由;
(2)在(1)的結論下,若不等式f(4t-1)+f(2t-m)>0在t∈[-1,1]上恒成立,求實數m的取值范圍.組卷:167引用:6難度:0.7