試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2013-2014學年江蘇省鹽城中學高二(下)周練數學試卷(2)

          發布:2024/11/10 9:0:1

          一、填空題:

          • 1.高二某班共有48人,學號依次為1,2,3,…,48,現用系統抽樣的方法抽取一個容量為4的樣本,已知學號5,29,41在樣本中,那么還有一個同學的學號應為
             

            組卷:22引用:3難度:0.9
          • 2.集合A={2,3},B={1,2,3},從A,B中各任意取一個數,則這兩數之和等于4的概率是

            組卷:50引用:9難度:0.9
          • 3.在區間[-2,4]上隨機地取一個數x,若x滿足|x|≤m的概率為
            5
            6
            ,則m=

            組卷:793引用:34難度:0.7
          • 4.某市連續5天測得空氣中PM2.5(直徑小于或等于2.5微米的顆粒物)的數據(單位:mg/m3)分別為115,125,132,128,125,則該組數據的方差為

            組卷:31引用:4難度:0.7
          • 5.若以連續擲兩次骰子分別得到的點數m、n作為點P的坐標,則點P落在圓x2+y2=16內的概率是

            組卷:112引用:29難度:0.7
          • 6.若在區間(-1,1)內任取實數a,在區間(0,1)內任取實數b,則直線ax-by=0與圓(x-1)2+(y-2)2=1相交的概率為

            組卷:77引用:16難度:0.7

          二、解答題:

          • 17.已知函數f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導函數.
            (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
            (2)解關于x的方程f(x)=|f′(x)|;
            (3)設函數
            g
            x
            =
            f
            x
            f
            x
            f
            x
            f
            x
            f
            x
            f
            x
            ,求g(x)在x∈[2,4]時的最小值.

            組卷:123引用:10難度:0.1
          • 18.如圖,橢圓
            x
            2
            a
            2
            +
            y
            2
            b
            2
            =1(a>b>0)的上、下兩個頂點為A,B,直線l:y=-2,
            點P是橢圓上異于點A、B的任意一點,連接AP并延長交直線l于點N,連接PB并延長交直線l于點M,設AP所在的直線的斜率為k1,BP所在的直線的斜率為k2,若橢圓的離心率為
            3
            2
            ,且過點A(0,1).
            (1)求k1?k2的值及線段MN的最小值;
            (2)隨著點P的變化,以MN為直徑的圓是否恒過定點?若過定點,求出該定點;如不過定點,請說明理由.

            組卷:39引用:3難度:0.5
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正