試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2022年天津市寧河區(qū)蘆臺二中高考數(shù)學模擬試卷(4月份)

          發(fā)布:2024/4/20 14:35:0

          一、單選題(每題5分,共45分)

          • 1.已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},則?BA=(  )

            組卷:258引用:41難度:0.9
          • 2.設{an}是首項大于零的等比數(shù)列,則“a1<a2”是“數(shù)列{an}是遞增數(shù)列”的(  )

            組卷:1066引用:34難度:0.9
          • 3.已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]上單調(diào)遞增,若a=f(
            log
            1
            5
            3),b=f(log35),c=f(0.20.5),則a,b,c的大小關(guān)系為( ?。?/h2>

            組卷:460引用:4難度:0.5
          • 4.已知雙曲線
            x
            2
            a
            2
            -
            y
            2
            b
            2
            =1(a>0,b>0)的一條漸近線過點(2,
            3
            ),且雙曲線的一個焦點在拋物線y2=4
            7
            x的準線上,則雙曲線的方程為( ?。?/h2>

            組卷:894引用:13難度:0.9
          • 5.已知函數(shù)
            f
            x
            =
            asinx
            +
            cosx
            cosx
            -
            1
            2
            的圖象的一條對稱軸為
            x
            =
            π
            6
            ,則下列結(jié)論中正確的是(  )

            組卷:715引用:6難度:0.6
          • 6.已知{an}為等差數(shù)列,其公差為-2,且a7是a3與a9的等比中項,Sn為{an}的前n項和,n∈N*,則S10的值為(  )

            組卷:1960引用:70難度:0.9

          三、解答題(共5題,共75分)

          • 19.已知橢圓
            C
            x
            2
            a
            2
            +
            y
            2
            b
            2
            =
            1
            a
            b
            0
            的左、右焦點分別是F1和F2,離心率為
            1
            2
            ,以P在橢圓C上,且△PF1F2的面積的最大值為
            3

            (1)求橢圓C的方程;
            (2)直線l過橢圓C右焦點F2,交該橢圓于A、B兩點,AB中點為Q,射線OQ交橢圓于P,記△AOQ的面積為S1,△BPQ的面積為S2,若S2=3S1,求直線l的方程.

            組卷:653引用:3難度:0.6
          • 20.已知函數(shù)f(x)=ln x+a(1-x)(a∈R).
            (Ⅰ)討論f(x)的單調(diào)性;
            (Ⅱ)當a=-
            1
            2
            時,令g(x)=x2-1-2f(x),其導函數(shù)為g′(x).設x1,x2是函數(shù)g(x)的兩個零點,判斷
            x
            1
            +
            x
            2
            2
            是否為g′(x)的零點?并說明理由.

            組卷:457引用:4難度:0.1
          APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
          本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正