2021-2022學年四川省成都市蓉城名校聯盟高二(下)期末數學試卷(理科)
發布:2024/4/20 14:35:0
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。
-
1.設集合A={x||x|≤1},B={x|x2-2x<0},則A∪B=( )
A.[0,1) B.[-1,2) C.[0,2) D.[1,2) 組卷:545引用:2難度:0.8 -
2.已知i為虛數單位,復數z滿足z(1-i)=4+3i,則|z|=( )
A. 102B. 52C. 522D. 72組卷:89引用:2難度:0.8 -
3.命題“?x∈R,ex≥lnx+2”的否定是( )
A.?x0∈R,e <lnx0+2x0B.?x∈R,ex<lnx+2 C.?x0∈R,e ≥lnx0+2x0D.?x0?R,e <lnx0+2x0組卷:94引用:3難度:0.8 -
4.在等差數列{an}中,已知a4=3,a2+a8=10,則數列{an}的公差為( )
A.-1 B.0 C.1 D.2 組卷:175引用:2難度:0.8 -
5.設x,y滿足約束條件
,則z=x+2y的最大值為( )2x-3≤yx+y≥1y≤3A.3 B.5 C.7 D.9 組卷:45引用:3難度:0.7 -
6.若函數f(x)=
,則f[f(2lnx,x>0x2-1,x≤0)]=( )1eA.3 B. -11e2C.e2-1 D.8 組卷:64引用:2難度:0.8 -
7.執行如圖所示的程序框圖,如果輸入n=5,則輸出的S值為( )
A. 49B. 89C. 511D. 1011組卷:41引用:5難度:0.9
三、解答題:本題共6小題,共70分。解答應寫出文字說明、證明過程或演算步驟。
-
21.已知橢圓C:
的右焦點為F,過點F的直線(不與x軸垂直)與橢圓C相交于A,B兩點,直線l:x=4與x軸相交于點H,過點A作AD⊥l,垂足為D.x24+y23=1
(1)求四邊形OAHB(O為坐標原點)面積的取值范圍;
(2)證明:直線BD過定點E,并求點E的坐標.組卷:108引用:2難度:0.5 -
22.在直角坐標系xOy中,曲線C1的參數方程為
(t為參數),以坐標原點為極點,以x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2=x=1+2ty=23t.22-cos2θ
(1)求曲線C1的極坐標方程和曲線C2的直角坐標方程;
(2)若曲線C1與C2交于A,B兩點,且點P(1,0),求+1|PA|的值.1|PB|組卷:82引用:2難度:0.5