2023-2024學年北京市海淀區八一學校高三(上)開學數學試卷
發布:2024/8/3 8:0:9
一、選擇題共10小題,每小題4分,共40分.在每題列出的四個選項中,選出符合題目要求的一項.
-
1.若集合A={1,2,3,4,5},集合B={x|x(4-x)<0},則圖中陰影部分表示( )
A.{1,2,3,4} B.{1,2,3} C.{4,5} D.{1,4} 組卷:186引用:11難度:0.9 -
2.設z=1+i,則z2-i=( )
A.i B.-i C.1 D.-1 組卷:165引用:6難度:0.8 -
3.下列函數中,值域為(1,+∞)的是( )
A.y=2x+1 B. y=1x+1C.y=log2|x| D.y=x2+1 組卷:425引用:4難度:0.9 -
4.“m>2”是“方程
表示雙曲線”的( )條件.x22-m+y2m+1=1A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件 組卷:142引用:5難度:0.7 -
5.埃及胡夫金字塔是世界古代建筑奇跡之一,它的形狀可視為一個正四棱錐,其側面與底面所成角的余弦值為
,則側面三角形的頂角的正切值為( )5-12A.2 B.3 C. 5-12D. 5+12組卷:345引用:5難度:0.6 -
6.直線l經過點A(0,b),且與直線y=2x平行,如果直線l與曲線y=x2相切,那么b等于( )
A. -14B.-1 C.1 D. 12組卷:62引用:1難度:0.6 -
7.圖1是第七屆國際數學教育大會的會徽圖案,會徽的主體圖案是由如圖2所示的一連串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把圖2中的直角三角形繼續作下去,記OA1,OA2,…,OAn的長度構成的數列為{an},則a36+a16=( )
A.52 B. 213C.10 D.100 組卷:86引用:2難度:0.8
三、解答題(本大題共6小題,共85分。解答應寫出文字說明,證明過程或演算步驟)
-
20.已知橢圓
的左、右頂點分別為A1,A2,上下頂點分別為B1,B2,四邊形A1B1A2B2的面積為4,且該四邊形內切圓的方程為C:x2a2+y2b2=1(a>b>0).x2+y2=45
(1)求橢圓C的方程;
(2)直線l:y=kx+m(k,m均為常數)與橢圓C相交于M,N兩個不同的點(M,N異于A1,A2),若以MN為直徑的圓過橢圓C的右頂點A2,試判斷直線l能否過定點?若能,求出該定點坐標;若不能,請說明理由.組卷:78引用:2難度:0.5 -
21.將m×n階數陣
記作{aij}m×n(其中,當且僅當i=s,j=t時,aij=ast).如果對于任意的i=1,2,3,…,m,當j1<j2時,都有a11,a12,…,a1na21,a22,…,a2n? ? ? ?am1,am2,…,amn,那么稱數陣{aij}m×n具有性質A.aij1<aij2
(Ⅰ)寫出一個具有性質A的數陣{aij}3×4,滿足以下三個條件:①a11=4,②數列{a1n}是公差為2的等差數列,③數列{am1}是公比為的等比數列;12
(Ⅱ)將一個具有性質A的數陣{aij}m×n的每一列原有的各數按照從上到下遞增的順序排列,形成一個新的m×n階數陣,記作數陣{bij}m×n.試判斷數陣{bij}m×n是否具有性質A,并說明理由.組卷:63引用:2難度:0.6