試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2012-2013學年陜西省榆林市神木中學高二(上)數學寒假作業4(文科)

          發布:2024/11/29 21:30:2

          一、選擇題(每小題5分,共50分)

          • 1.設f(x)是可導函數,且
            lim
            x
            0
            f
            x
            0
            -
            2
            x
            -
            f
            x
            0
            x
            =
            2
            f
            x
            0
            =(  )

            組卷:440引用:32難度:0.9
          • 2.f′(x)是f(x)的導函數,f′(x)的圖象如圖所示,則f(x)的圖象只可能是(  )

            組卷:443引用:83難度:0.9
          • 3.曲線y=x3-3x2+1在點(1,-1)處的切線方程為(  )

            組卷:1095引用:83難度:0.9
          • 4.設f(x)=xlnx,若f′(x0)=2,則x0等于(  )

            組卷:1516引用:167難度:0.9
          • 5.設a∈R,若函數y=ex+ax,x∈R,有大于零的極值點,則(  )

            組卷:1284引用:81難度:0.9
          • 6.已知對任意實數x,有f(x)+f(-x)=0,g(x)-g(-x)=0,且當x>0時,f′(x)<0,g′(x)<0,則當x<0時,有(  )

            組卷:15引用:3難度:0.9
          • 7.函數f(x)=x3-ax2-bx+a2在x=1處有極值10,則點(a,b)為(  )

            組卷:2733引用:57難度:0.7

          三、解答題

          • 20.已知二次函數f(x)滿足:①在x=1時有極值;②圖象過點(0,-3),且在該點處的切線與直線2x+y=0平行.
            (1)求f(x)的解析式;
            (2)求函數g(x)=f(x2)的單調遞增區間.

            組卷:48引用:17難度:0.5
          • 21.設函數
            f
            x
            =
            2
            x
            +
            1
            x
            2
            +
            2

            (Ⅰ)求f(x)的單調區間和極值;
            (Ⅱ)若對一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

            組卷:430引用:5難度:0.5
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正