2021-2022學年廣東省茂名市高二(下)期末數學試卷
發布:2024/12/22 1:30:2
一、單選題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.已知復數z的共軛復數
滿足z,則|z|=( )z+i=4+2iA.5 B.3 C. 32D. 17組卷:30引用:1難度:0.8 -
2.設集合
,則A∩(?ZN)=( )A={x|y=1-xx+2}A.{-2,-1} B.{-1} C.{-1,0} D.{0,1} 組卷:142引用:2難度:0.8 -
3.儲糧所用“鋼板倉”,可以看成由圓錐和圓柱兩部分組成的.現有一種“鋼板倉”,其中圓錐與圓柱的高分別是1m和3m,軸截面中等腰三角形的頂角為120°,若要儲存300m3的水稻,則需要準備這種“鋼板倉”的個數是( )
A.6 B.9 C.10 D.11 組卷:18引用:3難度:0.7 -
4.已知
為平面α的一個法向量,A(1,0,0)為α內的一點,則點D(1,1,2)到平面α的距離為( )a=(1,1,1)A. 3B. 2C. 52D. 63組卷:231引用:11難度:0.7 -
5.若將函數y=f(x)的圖象C1向左平移
個單位后得到函數y=g(x)的圖像C2,再將C2所有點的橫坐標伸長到原來的2倍得到函數y=sinx的圖像C3,則f(x)=( )π2A.-cos2x B.-sin2x C.cos2x D.sin2x 組卷:47引用:2難度:0.7 -
6.中國古代中的“禮、樂、射、御、書、數”,合稱“六藝”.“禮”主要指德育;“樂”主要指美育;“射”和“御”就是體育和勞動;“書”指各種歷史文化知識;“數”指數學.某校國學社團開展“六藝”講座活動,每次講一藝.講座次序要求“數”不在第一次也不在第六次,“禮”和“樂”不相鄰,則“六藝”講座不同的次序共有( )
A.480種 B.336種 C.144種 D.96種 組卷:225引用:6難度:0.7 -
7.若直線2x-y+m=0將圓C:(x-1)2+(y+2)2=9的面積分為(3π+2):(π-2),則m的值為( )
A. 4-352B. 4+352C. 4±3102D. -4±3102組卷:61引用:1難度:0.6
四、解答題:本題共6小題,共70分.解答應寫出必要的文字說明,證明過程或演算步驟.
-
21.已知橢圓E:
(a>b>0)的離心率為x2a2+y2b2=1,且點12在橢圓E上.P(1,32)
(1)求橢圓E的方程;
(2)過橢圓E的右焦點F作不與兩坐標軸重合的直線l,與E交于不同的兩點M,N,線段MN的中垂線與y軸相交于點T,求(O為原點)的最小值,并求此時直線l的方程.|MN||OT|組卷:406引用:2難度:0.6 -
22.已知函數f(x)=ex-
x2,g(x)=ax+1(a∈R).12
(1)求f(x)的圖象在x=0處的切線方程;
(2)當x∈[0,+∞)時,f(x)≥g(x)恒成立,求a的取值范圍.
(結論:當a>1時,函數y=ex-x-a在(0,+∞)上存在唯一的零點.)組卷:310引用:5難度:0.4