2020-2021學(xué)年福建省泉州五中高二(上)期中數(shù)學(xué)試卷
發(fā)布:2024/11/13 5:0:2
一、單項選擇題(本大題共8個小題,每小題5分,共40分.下列各題給出的四個選項中只有一個符合要求)
-
1.已知命題P:?x∈R,x>sinx,則命題p的否定為( )
A.¬p:?x0∈R,x0<Sinx0 B.¬p:?x∈R,x<sinx C.¬p:?x0∈R,x0≤sinx0 D.¬p:?x∈R,x≤sinx 組卷:4引用:2難度:0.8 -
2.設(shè)
=(-2,2,t),u=(6,-4,4)分別是平面α,β的法向量.若α⊥β,則t等于( )vA.6 B.5 C.4 組卷:181引用:3難度:0.8 -
3.m=-2是直線(2-m)x+my+3=0與直線x-my-3=0垂直的( )
A.充分不必要條件 B.必要不充分條件 C.充要條件 D.非充分也非必要條件 組卷:28引用:11難度:0.9 -
4.動點A在圓x2+y2=1上移動時,它與定點B(3,0)連線的中點的軌跡方程是( )
A.(x+3)2+y2=4 B.(x-3)2+y2=1 C.(x+ )2+y2=132D.(2x-3)2+4y2=1 組卷:109引用:6難度:0.8 -
5.過直線y=x+1上的點P作圓C:(x-1)2+(y-6)2=2的兩條切線l1,l2,當(dāng)直線l1,l2關(guān)于直線y=x+1對稱時,|PC|=( )
A.3 B.2 2C.1+ 2D.2 組卷:412引用:9難度:0.7 -
6.若圓x2+y2=4上恰有2個點到直線y=x+b的距離等于1,則b的取值范圍是( )
A. (-22,-2)∪(2,22)B. (-32,-2)∪(2,32)C. (-2,2)D. (-32,32)組卷:247引用:4難度:0.5 -
7.已知圓C1:x2+y2-kx-y=0和圓C2:x2+y2-2ky-1=0的公共弦所在的直線恒過定點M,且點M在直線mx+ny=2上,則
的最小值為( )m2+n2A. 15B. 55C. 255D. 45組卷:635引用:6難度:0.5
四、解答題(每題13分,共5題,共65分)
-
21.如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD和圓O所在的平面互相垂直.已知AB=2,EF=1.
(1)求證:直線BF⊥平面DAF;
(2)當(dāng)AD的長為何值時,二面角C-EF-A的大小為30°?組卷:5引用:1難度:0.6 -
22.在平面直角坐標(biāo)系xOy中,已知直線l:y=kx+3+8
和圓C1:x2+y2+8x+F=0.當(dāng)k=22時,直線l被圓C1截得的弦長為22.3
(1)求圓C1的方程;
(2)直線l與圓C1交于A,B兩點,求△OAB面積的最大值,并求出此時k的值;
(3)設(shè)圓C1和x軸相交于W,T兩點,點P為圓C1上不同于W,T的任意一點,直線PW,PT交y軸于M,N兩點.當(dāng)點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點?請證明你的結(jié)論.組卷:12引用:1難度:0.5