試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2022-2023學年上海市黃浦區格致中學高一(下)月考數學試卷(3月份)

          發布:2024/12/6 16:0:2

          一、填空題:(本題共有10個小題,每小題4分,滿分40分)

          • 1.若扇形圓心角為
            3
            π
            4
            ,面積為3π,則扇形半徑為

            組卷:32引用:1難度:0.7
          • 2.在△ABC中,
            BC
            =
            2
            AC
            =
            3
            B
            =
            60
            °
            ,則∠A=

            組卷:132引用:3難度:0.8
          • 3.已知tanα=3,則
            sinα
            -
            cosα
            sinα
            +
            cosα
            的值為

            組卷:199引用:7難度:0.9
          • 4.已知函數
            f
            x
            =
            lo
            g
            3
            4
            x
            +
            2
            ,則方程f-1(x)=4的解x=

            組卷:301引用:15難度:0.7
          • 5.已知
            sin
            α
            -
            β
            cosα
            -
            cos
            α
            -
            β
            sinα
            =
            3
            5
            ,β是第三象限角,則
            sin
            β
            -
            π
            4
            =

            組卷:291引用:3難度:0.8
          • 6.已知函數f(x)=
            2
            x
            -
            3
            x
            +
            1
            的圖象關于點P中心對稱,則點P的坐標是
             

            組卷:678引用:4難度:0.7

          三、解答題:(本題共有4大題,滿分44分。解題時要有必要的解題步驟)

          • 17.如圖,A,B是某海域位于南北方向相距15(1+
            3
            )海里的兩個觀測點,現位于A點北偏東45°,B點南偏東30°的C處有一艘船遇險后拋錨發出求救信號,位于B點正西方向且與B點相距50海里的D處的救援船立即前往營救,其航行速度為40海里/小時.
            (1)求B,C兩點間的距離;
            (2)該救援船前往營救漁船時的目標方向線(由觀測點看目標的視線)的方向是南偏東多少度(精確到0.01°)?救援船到達C處需要多長時間?
            (參考數據:sin21.79°≈0.37,cos21.79°≈0.93)

            組卷:167引用:12難度:0.5
          • 18.已知A、B是函數y=f(x),x∈[a,b]圖象的兩個端點,M(x,y)是f(x)上任意一點,過M(x,y)作MN⊥x軸交直線AB于N,若不等式|MN|≤k恒成立,則稱函數f(x)在[a,b]上“k階線性近似”.
            (1)若f(x)=x+
            1
            x
            ,x∈[
            1
            2
            ,2],證明:f(x)在[
            1
            2
            ,2]上“
            1
            2
            階線性近似”;
            (2)若f(x)=x2在[-1,2]上“k階線性近似”,求實數k的最小值.

            組卷:93引用:2難度:0.3
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正