2014-2015學(xué)年福建省泉州市德化一中高二(上)第三周周練數(shù)學(xué)試卷(理科)
發(fā)布:2024/12/4 16:30:6
一、選擇題
-
1.數(shù)列{an}是等比數(shù)列,則下列結(jié)論中正確的是( ?。?/h2>
A.對(duì)任意k∈N*,都有akak+1>0 B.對(duì)任意k∈N*,都有akak+1ak+2>0 C.對(duì)任意k∈N*,都有akak+2>0 D.對(duì)任意k∈N*,都有akak+2ak+4>0 組卷:31引用:1難度:0.9 -
2.在等差數(shù)列{an}中,有a6+a7+a8=12,則此數(shù)列的前13項(xiàng)之和為( ?。?/h2>
A.24 B.39 C.52 D.104 組卷:65引用:15難度:0.9 -
3.若Sn是等差數(shù)列{an}的前n項(xiàng)和,且S8-S3=10,則S11的值為( )
A.12 B.18 C.22 D.44 組卷:139引用:26難度:0.7 -
4.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,且a1=-2010,
,則a2=( ?。?/h2>S20112011-S20082008=3A.-2008 B.-2012 C.2008 D.2012 組卷:22引用:3難度:0.9 -
5.在等比數(shù)列{an}中,a1=1,公比q≠1.若am=a1a2a3a4a5,則m=( ?。?/h2>
A.9 B.10 C.11 D.12 組卷:930引用:29難度:0.9 -
6.已知數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),an=2an-1+1,則an=( ?。?/h2>
A.n2-1 B.n2-2n+2 C.2n-1 D.2n-1+1 組卷:89引用:4難度:0.7 -
7.在等差數(shù)列{an}中,a2=2,a3=4,則a10=( ?。?/h2>
A.12 B.14 C.16 D.18 組卷:1540引用:49難度:0.9
三、解答題
-
20.已知數(shù)列{an}的前n項(xiàng)和Sn=-an-(
)n-1+2(n為正整數(shù)).12
(1)令bn=2nan,求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)令cn=an,若Tn=c1+c2+…+cn,求Tn.n+1n組卷:196引用:17難度:0.1 -
21.已知數(shù)列{an}的前n項(xiàng)和為Sn,且
(n∈N*).?dāng)?shù)列{bn}是等差數(shù)列,且b2=a2,b20=a4.Sn=n+32an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和Tn.{bnan-1}組卷:13引用:2難度:0.3