2023-2024學(xué)年江蘇省無錫市江陰市南菁高級中學(xué)高二(上)調(diào)研數(shù)學(xué)試卷(9月份)
發(fā)布:2024/9/1 18:0:8
一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.數(shù)列
,23,45,69,817,?的一個通項公式為( )1033A. an=2n2n+1B. an=2n+22n+1C. an=n+12n+1-1D. an=2n+22n+1+2組卷:305引用:3難度:0.8 -
2.若數(shù)列{an}滿足an+1=
,且a1=1,則a17=( )4an+34(n∈N*)A.13 B.14 C.15 D.16 組卷:93引用:1難度:0.8 -
3.已知數(shù)列{an}滿足a1=1,an=an-1+3n-2(n≥2),則{an}的通項公式為( )
A. an=3n2B. an=3n2+nC. an=3n2-n2D. an=3n2+n2組卷:168引用:7難度:0.9 -
4.已知數(shù)列{an}的首項為2,且數(shù)列{an}滿足an+1=
,數(shù)列{an}的前n項的和為Sn,則S1008等于( )an-1an+1A.504 B.294 C.-294 D.-504 組卷:58引用:5難度:0.6 -
5.若數(shù)列{an}的前n項和為
,則|a1|+|a2|+…+|a10|等于( )Sn=n2-4n+2A.15 B.35 C.66 D.100 組卷:183引用:2難度:0.5 -
6.已知等比數(shù)列{an}的各項均為正數(shù),公比q≠1,
=a11,則k=( )ka1a2?akA.12 B.15 C.18 D.21 組卷:80引用:3難度:0.7 -
7.等比數(shù)列{an}的前n項和為Sn,S5=2,S10=6,則a16+a17+a18+a19+a20等于( )
A.8 B.12 C.16 D.24 組卷:225引用:1難度:0.7
四、解答題:本大題共6個大題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
-
21.設(shè)公差不為0的等差數(shù)列{an}的首項為1,且a2,a5,a14構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項公式,并求數(shù)列的前n項和為Tn;{an+12n}
(2)令cn=an+1an+2cos(n+1)π,若c1+c2+…+cn≥tn2對n∈N*恒成立,求實數(shù)t的取值范圍.組卷:383引用:7難度:0.4 -
22.如果數(shù)列{an}對任意的n∈N*,an+2-an+1>an+1-an,則稱{an}為“速增數(shù)列”.
(1)判斷數(shù)列{2n}是否為“速增數(shù)列”?說明理由;
(2)若數(shù)列{an}為“速增數(shù)列”.且任意項an∈Z,a1=1,a2=3,ak=2023,求正整數(shù)k的最大值;
(3)已知項數(shù)為2k(k≥2,k∈Z)的數(shù)列{bn}是“速增數(shù)列”,且{bn}的所有項的和等于k,若,n=1,2,3,…,2k,證明:ckck+1<2.cn=2bn組卷:364引用:8難度:0.3