試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2023-2024學年上海市普陀區宜川中學高三(上)期中數學試卷

          發布:2024/10/23 14:0:2

          一、填空題(本大題共有12題,滿分54分,第1-6題每題4分,第7-12題每題5分)

          • 1.計算:
            lim
            n
            →∞
            n
            i
            =
            1
            1
            3
            n
            =

            組卷:21引用:2難度:0.7
          • 2.已知集合A={y|y=4-x2,x∈R},
            B
            =
            {
            x
            |
            y
            =
            x
            +
            1
            x
            R
            }
            ,則A∩B=

            組卷:71引用:5難度:0.7
          • 3.二項式(x-1)7的展開式中,系數最大的項為

            組卷:60引用:2難度:0.8
          • 4.函數f(x)=x2ex,則f′(1)=
             

            組卷:133引用:3難度:0.7
          • 5.已知復數z滿足|z+4-3i|=2(i為虛數單位).則|z|的最大值為
             

            組卷:57引用:4難度:0.7
          • 6.設x,y均為正實數,且2x+5y=20,則lgx+lgy的最大值為

            組卷:78引用:3難度:0.7
          • 7.已知直線l:y=2x-10與雙曲線
            x
            2
            a
            2
            -
            y
            2
            b
            2
            =
            1
            a
            0
            b
            0
            的一條漸近線平行,且經過雙曲線的一個焦點,則雙曲線的標準方程為

            組卷:174引用:3難度:0.6

          三、解答題(共5道大題,其中17題14分,18題14分,19題14分,20題16分,21題18分,共計76分)

          • 20.已知橢圓Γ:
            x
            2
            a
            2
            +
            y
            2
            b
            2
            =
            1
            a
            b
            0
            ,F1,F2為左右焦點,直線l過左焦點F1與橢圓交于A,B兩點,其中A在第一象限,記
            c
            =
            a
            2
            -
            b
            2
            ,A(x0,y0),B(x1,y1).
            (1)若橢圓Γ的離心率為
            1
            2
            ,三角形F1F2A的周長為6,求橢圓Γ的方程;
            (2)求證:
            a
            2
            +
            c
            2
            x
            0
            +
            x
            1
            +
            2
            c
            x
            0
            x
            1
            +
            2
            a
            2
            c
            =
            0

            (3)直線AF2與橢圓交于另一點C(x2,y2),若b=c=1,求y1-y2的最大值.?

            組卷:70引用:1難度:0.3
          • 21.已知集合M是滿足下列性質的函數f(x)的全體:在定義域內存在實數t,使得f(t+2)=f(t)+f(2).
            (1)判斷f(x)=3x+2是否屬于集合M,并說明理由;
            (2)若
            f
            x
            =
            lg
            a
            x
            2
            +
            2
            屬于集合M,求實數a的取值范圍;
            (3)若f(x)=2x+bx2,求證:對任意實數b,都有f(x)∈M.

            組卷:245引用:5難度:0.3
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正