2022-2023學(xué)年山東省聊城一中高二(下)期中數(shù)學(xué)試卷
發(fā)布:2024/4/23 12:26:7
一、單選題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)符合題目要求.
-
1.已知函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)f′(x0)=-1,則
=( )limΔx→0f(x0+2Δx)-f(x0)ΔxA.-1 B.1 C. 12D.-2 組卷:23引用:3難度:0.8 -
2.學(xué)校食堂的一個(gè)窗口共賣5種菜,甲、乙、丙3名同學(xué)每人從中選一種,假設(shè)每種菜足量,則不同的選法共有( )
A.35種 B.53種 C. 種A35D. 種C35組卷:99引用:3難度:0.7 -
3.設(shè)某芯片制造廠有甲、乙兩條生產(chǎn)線均生產(chǎn)5nm規(guī)格的芯片,現(xiàn)有20塊該規(guī)格的芯片,其中甲、乙生產(chǎn)的芯片分別為12塊,8塊,且乙生產(chǎn)該芯片的次品率為
,現(xiàn)從這20塊芯片中任取一塊芯片,若取得芯片的次品率為0.08,則甲廠生產(chǎn)該芯片的次品率為( )120A. 15B. 110C. 115D. 120組卷:64引用:7難度:0.7 -
4.若
的展開式中只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,則該二項(xiàng)式的展開式中常數(shù)項(xiàng)為( )(x-2x2)nA.90 B.-90 C.180 D.-180 組卷:423引用:8難度:0.8 -
5.函數(shù)f(x)=
的圖象大致為( )ex-e-xx2A. B. C. D. 組卷:1957引用:128難度:0.9 -
6.中國(guó)古代中的“禮、樂(lè)、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )
A.120種 B.156種 C.188種 D.240種 組卷:683引用:10難度:0.5 -
7.在(1+x)+(1+x)2+(1+x)3+…+(1+x)9的展開式中,x3的系數(shù)為( )
A.120 B.210 C.720 D.5040 組卷:138引用:8難度:0.7
四、解答題:本題共7小題,共70分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
-
22.已知函數(shù)f(x)=lnx+
,a∈R.ax
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a>0時(shí),證明:f(x)≥.2a-1a組卷:300引用:8難度:0.4 -
23.已知函數(shù)f(x)=(x-2)ex.
(1)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)設(shè)g(x)=f(x)+lnx-x+2,記函數(shù)y=g(x)在(,1)上的最大值為g(a)(a∈R),證明:g(a)<-1.12組卷:84引用:4難度:0.5