北師大版必修4高考題單元試卷:第2章 平面向量(03)
發布:2024/12/26 22:0:2
一、選擇題(共13小題)
-
1.已知向量
=(λ+1,1),m=(λ+2,2),若(n+m)⊥(n-m),則λ=( )nA.-4 B.-3 C.-2 D.-1 組卷:8000引用:103難度:0.9 -
2.已知
,a是單位向量,b?a=0.若向量b滿足|c-c-a|=1,則|b|的最大值為( )cA. 2-1B. 2C. 2+1D. 2+2組卷:1772引用:25難度:0.9 -
3.若非零向量
,a滿足|b|=a|223|,且(b-a)⊥(3b+2a),則b與a的夾角為( )bA. π4B. π2C. 3π4D.π 組卷:5655引用:69難度:0.9 -
4.已知非零向量
滿足|a,b|=4|b|,且a⊥(a),則2a+b的夾角為( )a與bA. π3B. π2C. 2π3D. 5π6組卷:7124引用:64難度:0.9 -
5.設
=(1,2),a=(1,1),b=c+ka,若b,則實數k的值等于( )b⊥cA.- 32B.- 53C. 53D. 32組卷:4842引用:50難度:0.9 -
6.已知向量
,a=(-5,6),則b=(6,5)與a( )bA.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向 組卷:823引用:35難度:0.9 -
7.已知向量
=(1,0,-1),則下列向量中與a成60°夾角的是( )aA.(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1) 組卷:952引用:36難度:0.9 -
8.已知向量
=(1,a),3=(3,m),若向量b,a的夾角為b,則實數m=( )π6A.2 3B. 3C.0 D.- 3組卷:2621引用:46難度:0.9 -
9.平面向量
=(1,2),a=(4,2),b=mc+a(m∈R),且b與c的夾角等于a與c的夾角,則m=( )bA.-2 B.-1 C.1 D.2 組卷:2221引用:32難度:0.7 -
10.設
,a為非零向量,|b|=2|b|,兩組向量a,x1,x2,x3和x4,y1,y2,y3,均由2個y4和2個a排列而成,若b?x1+y1?x2+y2?x3+y3?x4所有可能取值中的最小值為4|y4|2,則a與a的夾角為( )bA. 2π3B. π3C. π6D.0 組卷:1050引用:30難度:0.7
三、解答題(共4小題)
-
29.設向量
,a=(3sinx,sinx),b=(cosx,sinx).x∈[0,π2]
(1)若,求x的值;|a|=|b|
(2)設函數,求f(x)的最大值.f(x)=a?b組卷:2724引用:52難度:0.5 -
30.小波以游戲方式決定是去打球、唱歌還是去下棋.游戲規則為以O為起點,再從A1,A2,A3,A4,A5,A6(如圖)這6個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數量積為X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.
(1)寫出數量積X的所有可能取值;
(2)分別求小波去下棋的概率和不去唱歌的概率.組卷:531引用:36難度:0.3