試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2021-2022學年內蒙古赤峰市紅旗中學高一(上)期末數學試卷(理科)

          發布:2024/4/20 14:35:0

          一、選擇題:本大題共12小題,每小題5分,在每小題給出的四個選項中,只有一項是符合題目要求的.

          • 1.方程x2=2x的所有實數根組成的集合為(  )

            組卷:19引用:2難度:0.7
          • 2.下列各角中,與60°角終邊相同的角是(  )

            組卷:797引用:9難度:0.9
          • 3.函數
            f
            x
            =
            4
            -
            x
            x
            -
            1
            的定義域為(  )

            組卷:193引用:6難度:0.9
          • 4.函數
            y
            =
            cos
            2
            πx
            +
            π
            6
            的最小正周期是(  )

            組卷:92引用:4難度:0.7
          • 5.納皮爾是蘇格蘭數學家,其主要成果有球面三角中納皮爾比擬式、納皮爾圓部法則(1614)和納皮爾算籌(1617),而最大的貢獻是對數的發明,著有《奇妙的對數定律說明書》,并且發明了對數尺,可以利用對數尺查詢出任意一對數值.現將物體放在空氣中冷卻,如果物體原來的溫度是T1(°C),空氣的溫度是T0(°C),經過t分鐘后物體的溫度T(°C)可由公式
            t
            =
            4
            lo
            g
            3
            T
            1
            -
            T
            0
            T
            -
            T
            0
            得出,如溫度為90°C的物體,放在空氣中冷卻2.5236分鐘后,物體的溫度是50℃,若根據對數尺可以查詢出log32=0.6309,則空氣溫度是(  )

            組卷:63引用:6難度:0.8
          • 6.已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
            π
            2
            )的圖象如圖,若x1,x2∈(1,4),且f(x1)+f(x2)=0(x1≠x2),則
            f
            x
            1
            +
            x
            2
            2
            =(  )

            組卷:161引用:3難度:0.7
          • 7.已知實數a滿足3a=5,則函數f(x)=ax+2x-log53的零點在下列哪個區間內(  )

            組卷:72引用:3難度:0.5

          三、解答題:本大題共6小題,共70分.解答應寫出文字說明,證明過程或演算步驟.

          • 21.如圖,在等腰梯形ABCD中,
            |
            AB
            |
            =
            2
            |
            DC
            |
            =
            4
            DAB
            =
            π
            4

            (1)若
            k
            AB
            -
            AD
            AC
            共線,求k的值;
            (2)若P為AD邊上的動點,求
            PA
            +
            PB
            ?
            PC
            的最大值.

            組卷:269引用:2難度:0.6
          • 22.在①函數
            f
            x
            =
            1
            2
            sin
            2
            ωx
            +
            φ
            ω
            0
            |
            φ
            |
            π
            2
            的圖象向右平移
            π
            12
            個單位長度得到g(x)的圖象,且g(x)圖象關于原點對稱;
            ②向量
            m
            =
            3
            sinωx
            ,
            cos
            2
            ωx
            n
            =
            1
            2
            cosωx
            ,
            1
            4
            ,ω>0,
            f
            x
            =
            m
            ?
            n

            ③函數
            f
            x
            =
            cosωxsin
            ωx
            +
            π
            6
            -
            1
            4
            ω
            0
            .在以上三個條件中任選一個,補充在下面問題中空格位置,并解答.
            已知_____,函數f(x)的圖象相鄰兩條對稱軸之間的距離為
            π
            2

            (1)若
            0
            θ
            π
            2
            ,且
            sinθ
            =
            2
            2
            ,求f(θ)的值;
            (2)求函數f(x)在[0,2π]上的單調遞減區間.

            組卷:72引用:2難度:0.6
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正