試卷征集
          加入會員
          操作視頻
          當前位置: 試卷中心 > 試卷詳情

          2023-2024學年黑龍江省大慶市薩爾圖區東風中學高二(上)月考數學試卷(10月份)

          發布:2024/10/3 7:0:1

          一、單選題(本大題共8小題,每題5分,共40分)

          • 1.總體由編號01,02,…,19,20的20個個體組成.利用下面的隨機數表選取5個個體,選取方法是隨機數表第1行的第7列和第8列數字開始由左到右依次選取兩個數字,則選出來的第5個個體的編號為(  )
            7816 6572 0802 6314 0702 4369 9728 0198
            3204 9234 4935 8200 3623 4869 6938 7481

            組卷:54引用:1難度:0.8
          • 2.已知事件A,B滿足P(A)=0.5,P(B)=0.2,則(  )

            組卷:308引用:1難度:0.5
          • 3.在100個零件中,有一級品20個,二級品30個,三級品50個,從中抽取20個作為樣本.
            方法一:采用簡單隨機抽樣的方法,將零件編號00,01,02,…,99,用抽簽法抽取20個.
            方法二:采用分層隨機抽樣的方法,從一級品中隨機抽取4個,從二級品中隨機抽取6個,從三級品中隨機抽取10個.
            對于上述問題,下列說法正確的是(  )
            ①不論采用哪種抽樣方法,這100個零件中每一個零件被抽到的可能性都是
            1
            5

            ②采用不同的方法,這100個零件中每一個零件被抽到的可能性各不相同;
            ③在上述兩種抽樣方法中,方法2抽到的樣本比方法1抽到的樣本更能反映總體特征;
            ④在上述抽樣方法中,方法1抽到的樣本比方法2抽到的樣本更能反映總體的特征.

            組卷:140引用:2難度:0.8
          • 4.已知數組
            a
            =(x,1,1),
            b
            =(-2,2,y),
            a
            ?
            b
            =0,則2x-y=(  )

            組卷:698引用:15難度:0.8
          • 5.2023年夏天,國產動畫電影《長安三萬里》熱映,點燃“唐詩熱”,為此某市電視臺準備在該電視臺舉辦的“我愛背唐詩”前三屆參加總決賽的120名選手(假設每位選手只參加其中一屆總決賽)中隨機抽取24名參加一個唐詩交流會,若按前三屆參加總決賽的人數比例分層隨機抽樣,則第一屆抽取6人,若按性別比例分層隨機抽樣,則女選手抽取15人,則下列結論錯誤的是(  )

            組卷:78引用:3難度:0.7
          • 6.在一段時間內,若甲去參觀市博物館的概率0.6,乙去參觀市博物館的概率為0.3,且甲乙兩人各自行動,則在這段時間內,甲乙兩人至少有一個去參觀博物館的概率是(  )

            組卷:87引用:2難度:0.7
          • 7.如圖,在四面體OABC中,
            OA
            =
            a
            OB
            =
            b
            OC
            =
            c
            .點M在OA上,且OM=2MA,N為BC中點,則
            MN
            等于(  )

            組卷:438引用:74難度:0.7

          四、解答題(本大題共6道題,共70分)

          • 21.如圖,AA1,BB1為圓柱OO1的母線,BC是底面圓O的直徑,D,E分別是AA1,CB1的中點,DE⊥面CBB1
            ?(1)證明:AB⊥A1C;
            (2)若BB1=BC,求平面A1B1C與平面BDC的夾角余弦值.

            組卷:26引用:1難度:0.6
          • 22.2021年孝感萬達廣場停車場臨時停車按時段收費,收費標準為每輛汽車一次停車不超過半小時的免費,超過半小時的部分每小時收費3元(不足1小時的部分按1小時計算).現有甲、乙兩人在該停車場臨時停車,兩人停車時間互不影響且都不超過2.5小時.
            (1)若甲停車的時長在不超過半小時、半小時以上且不超過1.5小時、1.5小時以上且不超過2.5小時這三個時段的可能性相同,乙停車的時長在這三個時段的可能性也相同,求甲、乙兩人停車付費之和為6元的概率;
            (2)若甲、乙停車半小時以上且不超過1.5小時的概率分別為
            1
            4
            1
            3
            ,停車1.5小時以上且不超過2.5小時的分別概率為
            5
            12
            1
            6
            ,求甲、乙兩人臨時停車付費不相同的概率.

            組卷:289引用:7難度:0.6
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正