2022-2023學年黑龍江省牡丹江第二高級中學高一(下)期末數學試卷
發布:2024/6/28 8:0:9
一、選擇題:本大題共8小題;每小題5分,共40分.在每小題給出的四個選項中,只有一個選項是符合題目要求的.
-
1.在復平面內,復數3i-2對應的點在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限 組卷:49引用:3難度:0.9 -
2.在平行四邊形ABCD中,
等于( )AB+ADA. ACB. BDC. BCD. CD組卷:509引用:3難度:0.9 -
3.已知向量
,且a=(1,2),b=(-4,m),則m=( )a⊥bA.8 B.2 C.-2 D.-8 組卷:300引用:6難度:0.8 -
4.若
=(2,0,1),a=(-3,1,-1),b=(1,1,0),則c+2a-3b=( )cA.(-1,-2,0) B.(-7,-1,0) C.(-7,-1,1) D.(-7,-1,-1) 組卷:399引用:10難度:0.8 -
5.設正方體的棱長為
,則它的外接球的表面積為( )3A. 92πB. 94πC.9π D.3π 組卷:101引用:2難度:0.7 -
6.如圖,在高速公路建設中,要確定隧道AB的長度,工程人員測得隧道兩端的A,B兩點到C點的距離分別為AC=3km,BC=4km,且∠ACB=60°,則隧道AB長度為( )
A.2 km2B. km11C.2 km3D. km13組卷:149引用:2難度:0.8 -
7.下列命題中為真命題的是( )
A.向量 與AB的長度相等BAB.空間向量就是空間中的一條有向線段 C.若將空間中所有的單位向量移到同一個起點,則它們的終點構成一個圓 D.不相等的兩個空間向量的模必不相等 組卷:132引用:7難度:0.7
四、解答題:本大題共6小題,共70分.解答應寫出必要的文字說明、證明過程及演算步驟.
-
21.如圖,已知正三棱錐P-ABC的側面是直角三角形,PA=6,頂點P在平面ABC內的正投影為點D,D在平面PAB內的正投影為點E,連接PE并延長交AB于點G.作GH∥PB交PA于H.
(1)證明:G是AB的中點;
(2)證明:GH⊥面PAC;
(3)過點E作EF⊥面PAC,F為垂足,求三棱錐P-DEF的外接球體積.組卷:141引用:2難度:0.4 -
22.如圖,將邊長為4的等邊三角形ABC沿與邊BC平行的直線EF折起,使得平面AEF⊥平面BCEF,O為EF的中點.
(1)求平面AEF與平面AEB所成角的余弦值;
(2)若BE⊥平面AOC,試求折痕EF的長;
(3)當點O到平面ABC距離最大時,求折痕EF的長.組卷:273引用:5難度:0.3