試卷征集
          加入會(huì)員
          操作視頻
          當(dāng)前位置: 試卷中心 > 試卷詳情

          2022-2023學(xué)年湖南省長沙市同升湖實(shí)驗(yàn)學(xué)校高三(上)第三次月考數(shù)學(xué)試卷

          發(fā)布:2024/4/20 14:35:0

          一、單項(xiàng)選擇題(本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

          • 1.命題“?x0≥0,
            2
            x
            0
            +
            3
            1
            ”的否定是(  )

            組卷:35引用:3難度:0.8
          • 2.已知集合A={x|-4<x<3},B={-3,1,2,3,4}則A∩B=(  )

            組卷:23引用:2難度:0.8
          • 3.已知
            |
            a
            |
            =
            1
            |
            b
            |
            =
            2
            a
            ?
            b
            =
            -
            1
            2
            ,則
            cos
            ?
            a
            a
            -
            b
            ?
            =(  )

            組卷:128引用:1難度:0.7
          • 4.已知
            sin
            α
            -
            π
            6
            =
            1
            3
            ,則
            cos
            2
            α
            +
            2
            π
            3
            =(  )

            組卷:405引用:3難度:0.7
          • 5.已知向量
            a
            =
            1
            cosx
            b
            =
            2
            sinx
            ,若
            a
            b
            ,則
            a
            ?
            b
            =(  )

            組卷:97引用:1難度:0.7
          • 6.已知定義在(0,+∞)上的函數(shù)f(x)滿足2xf(x)+x2f'(x)<0,
            f
            2
            =
            3
            4
            ,則關(guān)于x的不等式
            f
            x
            3
            x
            2
            的解集為(  )

            組卷:498引用:4難度:0.6
          • 7.函數(shù)
            f
            x
            =
            sin
            πx
            +
            x
            x
            -
            1
            -
            1
            ,則直線y=2x-2與y=f(x)的圖象的所有交點(diǎn)的橫坐標(biāo)之和為(  )

            組卷:111引用:3難度:0.7

          四、解答題(本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟)

          • 21.某新型智能家電在網(wǎng)上銷售,由于安裝和使用等原因,必須有售后服務(wù)人員上門安裝和現(xiàn)場教學(xué)示范操作,所以每個(gè)銷售地區(qū)需配備若干售后服務(wù)店.A地區(qū)通過幾個(gè)月的網(wǎng)上銷售,發(fā)現(xiàn)每月利潤(萬元)與該地區(qū)的售后服務(wù)店個(gè)數(shù)有相關(guān)性.如表中x表示該地區(qū)的售后服務(wù)店個(gè)數(shù),y表示在有x個(gè)售后服務(wù)店情況下的月利潤額.
            x(個(gè)) 2 3 4 5 6
            y(萬元) 19 34 46 57 69
            (1)求y關(guān)于x的線性回歸方程;
            (2)假設(shè)x個(gè)售后服務(wù)店每月需消耗資金t=3.8+0.5x2(單位:萬元),請結(jié)合(1)中的線性回歸方程,估算A地區(qū)開設(shè)多少個(gè)售后服務(wù)店時(shí),才能使A地區(qū)每月所得利潤平均到每個(gè)售后服務(wù)店最高.
            附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
            ?
            b
            =
            n
            i
            =
            1
            x
            i
            -
            x
            y
            i
            -
            y
            n
            i
            =
            1
            x
            i
            -
            x
            2
            ?
            a
            =
            y
            -
            ?
            b
            x
            .參考數(shù)據(jù):
            5
            i
            =
            1
            x
            i
            y
            i
            =
            1023

            組卷:112引用:2難度:0.5
          • 22.已知函數(shù)f(x)=lnx.
            (1)證明:f(x+1)≤x;
            (2)若函數(shù)h(x)=2xf(x),若存在x1<x2使h(x1)=h(x2),證明:
            x
            1
            ?
            x
            2
            1
            e
            2

            組卷:70引用:2難度:0.3
          APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
          本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正