閱讀理解和問題解決
(1)如圖1,在△ABC中,若AB=10,AC=6.求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點E,使得AD=DE,再連接BE.此時構(gòu)造出一對全等的三角形為:△ADC△ADC≌△EDB△EDB,全等的依據(jù)為 SASSAS,于是可推得AD=EDED,AC=EBEB,這樣就把AB,AC,2AD集中在△ABE中,利用三角形三邊關(guān)系即可判斷中線AD的取值范圍是 2<AD<82<AD<8;
(2)如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF,請你參考問題(1)的解答思路求證:BE+CF>EF.
【答案】△ADC;△EDB;SAS;ED;EB;2<AD<8
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/16 13:0:1組卷:346引用:5難度:0.5
相似題
-
1.如圖所示,在△ABC中,AB=AC,O是△ABC內(nèi)一點,且OB=OC,AO的延長線交BC于點D.證明:BD=CD.
發(fā)布:2025/7/1 13:0:6組卷:64引用:2難度:0.5 -
2.如圖,AD=AB,∠C=∠E,∠CDE=55°,則∠ABE=.
發(fā)布:2025/7/1 13:0:6組卷:641引用:15難度:0.7 -
3.已知△ABC是等腰直角三角形,∠BAC=90°,CD=
BC,DE⊥CE,DE=CE,連接AE,點M是AE的中點.12
(1)如圖1,若點D在BC邊上,連接CM,當(dāng)AB=4時,求CM的長;
(2)如圖2,若點D在△ABC的內(nèi)部,連接BD,點N是BD中點,連接MN,NE,求證:MN⊥AE;
(3)如圖3,將圖2中的△CDE繞點C逆時針旋轉(zhuǎn),使∠BCD=30°,連接BD,點N是BD中點,連接MN,探索的值并直接寫出結(jié)果.MNAC發(fā)布:2025/7/1 13:0:6組卷:2964引用:4難度:0.1