如圖,拋物線y=ax2+bx+4(a≠0)與x軸交于點A(-1,0)和點B(4,0),與y軸交于點C,頂點為D,連接AC,BC,BC與拋物線的對稱軸l交于點E.
(1)求拋物線的表達式;
(2)點P是第一象限內拋物線上的動點,連接PB,PC,若S△PBC=35S△ABC,求點P的坐標.
S
△
PBC
=
3
5
S
△
ABC
【答案】(1)y=-x2+3x+4;
(2)P的坐標為(1,6)或(3,4).
(2)P的坐標為(1,6)或(3,4).
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:296引用:4難度:0.7
相似題
-
1.已知二次函數y=x2-mx+m-2:
(1)求證:不論m為任何實數,此二次函數的圖象與x軸都有兩個交點;
(2)當二次函數的圖象經過點(3,6)時,確定m的值,并寫出此二次函數與坐標軸的交點坐標.發布:2025/6/24 17:0:1組卷:1313引用:11難度:0.7 -
2.拋物線y=x2-2x+1與坐標軸交點個數為( )
A.無交點 B.1個 C.2個 D.3個 發布:2025/6/24 17:30:1組卷:1079引用:22難度:0.9 -
3.二次函數y=2x2-2x+m(0<m<
),如果當x=a時,y<0,那么當x=a-1時,函數值y的取值范圍為( )12A.y<0 B.0<y<m C.m<y<m+4 D.y>m 發布:2025/6/25 5:30:3組卷:143引用:2難度:0.7